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Abstract We performed seismic waveform inversions and numerical landslide7

simulations of deep-seated landslides in Japan to understand the dynamic evo-8

lution of friction of the landslides. By comparing the forces obtained from a9

numerical simulation to those resolved from seismic waveform inversion, the10

coefficient of friction during sliding was well constrained between 0.3 and 0.411

for landslides with volumes of 2-8×106 m3. We obtained similar coefficients of12

friction for landslides with similar scale and geology, and they are consistent13

with the empirical relationship between the volume and dynamic coefficient of14

friction obtained from the past studies. This hybrid method of the numerical15
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simulation and seismic waveform inversion shows the possibility of reproducing16

or predicting the movement of a large-scale landslide. Our numerical simula-17

tion allows us to estimate the velocity distribution for each time step. The18

maximum velocity at the center of mass is 12-36 m/s and is proportional to19

the square root of the elevation change at the center of mass of the land-20

slide body, which suggests that they can be estimated from the initial DEMs.21

About 20% of the total potential energy is transferred to the kinetic energy22

in our volume range. The combination of the seismic waveform inversion and23

the numerical simulation helps to obtain the well-constrained dynamic coeffi-24

cients of friction and velocity distribution during sliding, which will be used25

in numerical models to estimate the hazard of potential landslides.26

Keywords landslide · dynamic friction · numerical simulation · seismic27

waveform inversion · force history28

1 Introduction29

Dynamic friction of landslides is one of the key factors controlling the mobility30

of slope failures. The runout distance and velocity of landslides strongly depend31

on this parameter. Various friction models calibrated by analytical solutions32

on the laboratory scale and runout distance of landslides have been proposed33

(e.g. Guthrie et al. 2012; Moretti et al. 2012; Lucas et al. 2014; Pastor et al.34

2014).35

Conventionally, it was estimated by the ratio of the drop height (H) and36

runout (L), which is referred as Heim’s ratio (H/L). Several observations based37
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on experimental and field surveys indicate that larger landslides have a smaller38

apparent coefficient of friction (Hsü 1975; Dade and Huppert 1998; Legros39

2002; Balmforth and Kerswell 2005; Mangeney et al. 2010; Farin et al. 2014).40

Lucas et al. (2014) proposed an empirical velocity-weakening friction law cal-41

ibrated by the extension of landslide deposits using the SHALTOP numerical42

model. The results showed that the effective friction coefficient (a function of43

the slope, thickness of the released mass, and distance travelled by the front44

along the slope) explained the volume dependency more precisely than Heim’s45

ratio. The advantage of numerical simulations is that three dimensional to-46

pography and mass deformation can be included, so the results can be more47

realistic than those using the more straightforward Heim’s ratio.48

Recent studies show that the use of seismic signals allows us to obtain49

the physical parameters of high-speed landslides, such as the time history of50

the force acting on the surface, velocity, coefficient of friction (e.g. Kawakatsu51

1989; Brodsky et al. 2003; Favreau et al. 2010; Moretti et al. 2012; Yamada52

et al. 2013; Allstadt 2013; Ekström and Stark 2013; Moretti et al. 2015). It53

is a novel approach to estimate dynamic parameters of landslides, which may54

be difficult to obtain from a conventional field survey after the occurrence of55

a disaster. Yamada et al. (2016) used the SHALTOP numerical model and56

seismic waveform inversion to resolve the time-evolution of friction. They ob-57

tained a well constrained average coefficient of friction over the volume for the58

2011 Akatani landslide. This event was one of the sequential landslides caused59

by a typhoon, so it is important to study these landslides in similar geology60
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and condition to understand the general dynamic behavior of landslides. In-61

vestigating the behavior of gravitational flows in a similar environment makes62

it possible to get insight into the possible volume dependence on the coefficient63

of friction.64

In this paper, we used the seismic data of four large-scale deep-seated65

landslides in Japan caused by typhoons to estimate the dynamic frictional66

coefficients during the movement (see Table 1). In general, the seismic signals67

due to the landslides are much weaker than earthquakes, so they are generally68

difficult to detect with global or regional broadband seismic networks unless69

the landslides are greater than 107 m3 in volume (Ekström and Stark 2013).70

Here, we utilise a very dense array of high-sensitivity accelerometers installed71

in boreholes across Japan (Okada et al. 2004). The sensors are collocated72

with Hi-net (High sensitivity seismograph network, Japan) and the average73

spacing of the stations is 20-25 km. Another advantage of these landslides is74

the precise topographic data obtained before and after the events from LiDAR75

data and photogrammetry, which enable direct measurements of the potential76

energy released by the landslide and provide a digital elevation model (DEM)77

for the numerical simulations. Using the method of Yamada et al. (2016), we78

propose a friction model, which describes the movement of these large bedrock79

landslides. The well-constrained dynamic coefficients of friction and velocity80

distribution during sliding will be used for the numerical model to assess the81

hazard of future potential landslides.82
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2 Sites and data83

We focused on large landslides caused by heavy rainfall which occurred after84

2004, when the dense seismic networks were installed in Japan (Okada et al.85

2004; Public Works Research Institute, Japan 2017). Here we selected four86

large-scale deep-seated landslides in the south-western outer arc of Japan: one87

in Kyushu island: Nonoo, and three in the Kii Peninsula: Akatani, Iya, and88

Nagatono. The Nonoo landslide occurred on September 6, 2005 when Typhoon89

Nabi (No. 14 in Japan) produced heavy rainfall; over 500 mm during 72 hours90

on the Kyushu area. The Akatani, Iya and Nagatono landslides occurred on91

September 4, 2011, when Typhoon Talas (No. 12 in Japan) supplied rainfall92

ranging 1000 to 2000 mm over five days on the Kii Peninsula. We also checked93

the seismic data of all other large landslides greater than 1 ×106 m3 since 2004,94

but the signal-to-noise ratio was not high enough to detect and reconstruct the95

motion of landsliding. Landslides right after large earthquakes are not suitable96

for this analysis either since the signal is contaminated by the earthquakes97

strong motion.98

The locations and other information of the landslides are shown in Table 199

and Figure 1. The failed slopes have geometries of 460 to 1100 m in horizon-100

tal length and 270 to 640 m in vertical relief, with sliding volumes 2-8 ×106101

m3. The geology of all the landslides are underlain by Neogene to Cretaceous102

accretionary sedimentary rocks. The bedrock of the Nonoo landslide is alter-103

nating beds of sandstone and mudstone, which have a north-ward inclination104

around 30 degrees and a NE-SW strike parallel to the dip direction of the slid-105
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ing hillslope (Chigira 2009). Landslides in the Kii area all occurred on dipping106

slopes of sandstone-mudstone alternating beds or chaotic rocks; for Akatani107

and Nagatono, a set of high-angle faults forms a wedge structure in the strata,108

which may bound the side scars of the landslides (Chigira et al. 2013). Slope109

angles for Akatani and Nagatono are 34 and 33 degrees respectively, whereas110

that of Iya is slightly lower, 24 degrees.111

We used the F-net broadband seismograms and high-sensitivity accelero-112

grams recorded in boreholes across Japan (Okada et al. 2004). F-net contains113

three component STS-2 sensors with average spacing of about 100 km. The114

high-sensitivity accelerometers are collocated with the Hi-net velocity seis-115

mometers and consist of two horizontal components. The average spacing of116

the stations is 20-25 km. Since seismic signals due to landslides are very weak,117

the seismic station must be close to the landslide. We checked all stations less118

than 100 km from the landslides, and did not use records with poor signal-to-119

noise ratio. We mainly used data recorded at distances less than 50 km from120

the landslides (see Figure 2).121

We obtained a DEM with 1 m grid spacing before and after the landslide122

from airborne LiDAR data (Yamada et al. 2013). If the LiDAR data before123

the landslide was not available, a 10m DEM made by photogrammetry was124

used instead (Geospatial Information Authority of Japan 2017) (see Table 1).125

The domain of the numerical simulation is shown in Figure 1. Due to the126

limitation of computation memory, we downsampled (or resampled for the127

10m DEM) the DEM to a 4 m grid for the Nonoo landslide, and a 5 m grid128
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for the other landslides. We used finer grids for the Nonoo landslide since it is129

smaller than others, but the long period waves greater than 10 s (wavelength130

of a few kilometers) used in this study are insensitive to this size of grid. We131

prepared two topographic data sets from the DEM; the sliding surface and the132

mass thickness on the surface. The sliding surface was constructed by taking133

the lower values of the DEMs before and after the landslide. The thickness134

of the sliding mass was computed by subtracting this sliding surface from the135

DEM before the landslide.136

3 Methods137

In order to explore the dynamic friction of the large landslides, we performed138

seismic waveform inversions and numerical simulations with our DEMs. The139

seismic waveform inversion provides a single force at the landslide which gen-140

erates the seismic waveforms (Nakano et al. 2008). The numerical simulation141

allows us to compute the force acting on the sliding surface, which is the sum-142

mation of the stress field applied by the landslide mass (Bouchut et al. 2003;143

Mangeney et al. 2000).144

These force histories are strongly controlled by the flow rheology, i.e., dy-145

namic friction. Therefore, we can modulate the behavior of the sliding mass146

by changing the friction model. By comparing these forces with those calcu-147

lated from the seismic waveform inversion in the same frequency range, we148

can identify a friction model which describes the movements of large bedrock149

landslides (Moretti et al. 2015; Yamada et al. 2016). Note that the result of150
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Akatani landslide was presented in Yamada et al. (2016) and we use their151

results to compare with the other landslides investigated here.152

3.1 Seismic Waveform Inversion153

We performed a waveform inversion using broadband seismic records and high-154

sensitivity accelerograms to obtain the source time function. We processed155

these records according to the following procedure. First, we removed the156

mean from the time series and corrected for the instrumental response in all157

waveforms. A non-causal fourth order Butterworth filter was applied to remove158

noise. We tuned the corner frequencies of the filter for each event shown in159

Table 2 to maximize the signal-to-noise ratio. The data was integrated in the160

time domain to obtain the displacement component. We then downsampled161

the data to reduce the sampling frequency to 1 Hz. We used these filtered162

displacement records for the inversion.163

Following the method of Nakano et al. (2008), we performed a waveform164

inversion in the frequency domain to determine the source process of the land-165

slide. We calculated Green’s functions at the given location of the landslide,166

using a discrete wavenumber method (Bouchon 1979) and the Japan Meteoro-167

logical Agency (JMA) one-dimensional velocity structure model (Ueno et al.168

2002). Assuming a single-force mechanism for the landslide source (Hasegawa169

and Kanamori 1987), we estimated the least-squares solution in the frequency170

domain. We performed an inverse Fourier transform on the solution to deter-171
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mine source time functions for three single-force components at each source172

location (Nakano et al. 2008).173

3.2 Shaltop Numerical Simulation174

We used the SHALTOP numerical model to compute the spatiotemporal stress175

field applied to the sliding surface by the moving landslide mass. It is based on176

the thin-layer approximation and depth-averaging of the Navier-Stokes equa-177

tions without viscosity (Bouchut et al. 2003; Mangeney et al. 2000; Mangeney-178

Castelnau et al. 2005). The behavior of the sliding mass is strongly controlled179

by the friction model. Followed by Yamada et al. (2016), we tested two dif-180

ferent friction laws: Coulomb friction, in which the dynamic coefficient of fric-181

tion is independent of sliding velocity, and a velocity-dependent friction model182

(Pouliquen and Forterre 2002; Jop et al. 2006; Liu et al. 2016).183

The velocity-dependent friction model is defined by the following equation:184

µ =
µo − µw

1 + ||U ||/Uw

+ µw (1)

where µo is the static coefficient of friction, µw is the dynamic coefficient of185

friction during sliding, and Uw is the characteristic velocity for the onset of186

weakening. ||U || is the scalar amplitude of the three component velocity vector187

at each grid cell. Note that µo is the coefficient of friction when ||U || = 0, µw188

is the coefficient of friction when ||U || = ∞, and Uw controls how quickly the189

coefficient of friction drops as a function of velocity. We computed µ for each190

grid cell at each time step.191
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3.3 Estimation of Coefficients of Friction192

We evaluated different friction models by comparing the simulated force with193

that obtained from seismic waveform inversion. The most probable coefficients194

for the friction model were obtained by a grid search. A parameter range for the195

Coulomb friction model (µconst) is between 0.2 and 0.5 with a 0.02 increment.196

We selected this range so that the local minima are included. A three dimen-197

sional (3D) grid search for the velocity dependent friction model was performed198

in the following parameter space: µo = (0.10, 0.20, 0.22, 0.24, ..., 0.36, 0.38, 0.40),199

µw = (0.1, 0.2, 0.3, 0.4), and Uw = (0.5, 1, 2, 3, 4) m/s.200

The normalized residual (hereafter referred to as the residual), defined as201

the following, is used to evaluate the quality of the fit:202

R =

∑
nt

t=1
(fo(t)− fs(t−∆t))2
∑

nt

t=1
(fo(t))2

(2)

where fo(t) and fs(t) are the force at time t computed from the seismic wave-203

form inversion and numerical simulation, respectively, and nt is the total du-204

ration of the force in 1 s intervals. ∆t is selected to minimize the mean of the205

residuals for the three-component forces.206

4 Results207

4.1 Seismic Waveform Inversion208

Figure 3 shows the source time functions of three single force components209

obtained from the seismic waveform inversion. Waveform fittings between ob-210

served and synthesized seismograms are shown in Supplemental Figures S1-S3.211
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We have better residuals for the Iya and Nonoo landslides than the Nagatono212

landslide, even though we used a wider frequency range for those landslides213

(see Table 2). This is because they are larger landslides and have closer seis-214

mic stations, which results in a better signal-to-noise ratio for the data. The215

waveform inversion results of the Akatani landslide were presented in Yamada216

et al. (2013), with a normalized residual (equation 2) of 0.08.217

Figure 3 shows that phases of all three components are synchronized and218

the direction of the peak amplitude is the same as the landslide movement di-219

rection. This suggests that the force history obtained by the seismic waveform220

inversion reflects the main landslide movement. Note that the information for221

the vertical direction is limited since the high-sensitivity accelerometer consists222

of two horizontal components only. Therefore, we may not have enough reso-223

lution for the vertical component. For example, the force in the UD (up-down)224

component in Figure 3(c) is clearly overestimated, as we can see the poor fit in225

the UD displacement at TMC station (Supplemental Figure S3). For the Iya226

and Nonoo landslides, we used only EW (east-west) and NS (north-sourth)227

components to compute the residual in equation 2. We selected EW and UD228

components for the Nagatono landslide since they have better signal-to-noise229

ratio.230

4.2 Estimation of Coefficients of Friction231

Figure 4 shows the residual of the coefficients of the Coulomb friction model.232

The parameter space is reasonably smooth, and the most probable coefficient233
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of friction (µconst) is 0.32 for Iya, 0.40 for Nagatono, and 0.36 for Nonoo.234

The µconst of Akatani landslide in Yamada et al. (2016) was 0.3, so these are235

slightly larger than that of the Akatani landslide. The coefficients may vary236

slightly depending on the filter type, components, or stations, but it would be237

difficult to change the values of the most probable coefficients by 0.1.238

Figure 5 shows the residual of the velocity dependent friction model in239

the 3D parameter space. The optimal parameter sets are (µo, µw, Uw) =(0.6,240

0.24, 4) for Akatani, (0.7, 0.28, 0.5) for Iya, (0.7, 0.34, 3) for Nagatono, and241

(0.7, 0.2, 4) for Nonoo. Although µw is theoretically the smallest coefficient242

of friction in the model, the coefficient of friction during sliding is controlled243

by both Uw and µw. In an extreme case, if Uw = ∞, the coefficient of friction244

does not depend on µw.245

In order to evaluate the coefficient of friction during sliding, time history246

of the mass-weighted average of the coefficient of friction for each model in247

Figure 5 is shown in Figure 6. Although the velocity dependent model has248

a trade-off between parameters in Figure 5, the average coefficient of friction249

during sliding seems to be well constrained with a small variance. To evaluate250

the variation of the dynamic coefficient of friction, the minimum coefficient251

of friction for each model was computed, and the models whose residual was252

within 0.05 from the smallest residual were selected. The mean and standard253

deviation for the selected models are shown in Figure 7(a). The standard254

deviation of the minimum coefficient of friction is less than 0.03, which suggests255
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that the dynamic coefficient of friction is well constrained, even though the256

standard deviation of µw seems to be large in Figure 5.257

4.3 Deposit of landslides258

Figure 8 shows the comparison between actual extent of the valley-fill deposits259

and the results of numerical simulations for the four landslides. Note that the260

depositional areas were estimated from elevation difference of the DEMs before261

and after the event; hence the upstream side of the deposits includes the areas262

of the barrier lakes in the cases of Akatani, Nagatono, and Iya (Figures 8(a),263

(b), and (c)). For the Nonoo case, since the landslide dam had been breached264

just after the event, the toe of the deposit was eroded by the outburst of the265

lake water. Low precision of the DEM before the landslide in the Iya and Nonoo266

cases made from aerial photogrammetry also resulted in the larger uncertainty267

in the reconstruction of deposit thickness.268

Although the horizontal extent of deposits seems to be largely consistent,269

there are discrepancies in the distributions of thickness. One of the main rea-270

sons for this discrepancy is the limitation of the friction model. We used a271

model with a velocity-weakening friction law, as the friction decreases along272

with the sliding and then increases to the static value at the end of sliding273

when the velocity decreases. This hypothesized process has been developed for274

the modeling of dry granular flows. However, in reality, the pressure of the pore275

fluid significantly changes the landslide dynamics (Iverson 1997; Schulz et al.276

2009). Especially when the sliding mass reaches the valley bottom, generation277
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of high pore-water pressure due to the mass compression alters the behavior278

of the mass settlement. Indeed, parts of the landslide material fluidized and279

ran out as a debris flow down the valley.280

Another limitation of the depth-averaged models is that the whole col-281

umn stops at the same time, whereas in actual granular flows there may be282

a propagation of the static/flowing interface towards the surface during the283

arrest phase (Ionescu et al. 2015; Fernández-Nieto et al. 2016). This could also284

change the final distribution of thicknesses.285

The mass change due to erosion and entrainment at the bottom of sliding286

is another cause to produce this discrepancy of deposits. The erosional pro-287

cesses may significantly change the distribution of the deposit, which can be288

demonstrated by the change of the mass during sliding (Moretti et al. 2012).289

This entrainment effect was not considered in the model used here because of290

the relatively short runout distance.291

As we have seen in past landslides, the dominant long-period seismic signal292

was effectively generated during the beginning to middle stages of the land-293

slide movement when the whole mass moves uniformly (Yamada et al. 2013;294

Hibert et al. 2015, 2017). The friction model is calibrated by the seismic signal295

and strongly depends on the large amplitudes during the early stage of the296

landslide. So it is difficult to reproduce the later extent of the deposit, because297

the model is strongly dependent on the earlier long-period seismic signals.298
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5 Discussion299

We obtained a force history of large landslides from the seismic waveform300

inversion with broadband and high-sensitivity accelerometer data, which re-301

flects the movement of the landslides. The numerical simulation benchmarked302

by the force history provides a reasonable estimate of the dynamic coefficient303

of friction.304

5.1 Volume vs Coefficients of Friction305

Figure 7(a) shows the relationship between the volume and coefficient of fric-306

tion for the Coulomb and velocity dependent friction model of four landslides307

in this study. The coefficient of friction is well constrained between 0.3 and 0.4,308

although the range of the volume is limited possibly due to the similar geology309

(accretionary sedimentary rocks) and geometry (hillslope angle of 30◦ ± 6◦).310

These landslides in the same environment with similar volumes seem to have a311

comparable coefficient of friction estimated by the method of coupled seismic312

and modelling analysis. The Akatani landslide in Figure 7(a) shows little dif-313

ference between the Coulomb friction model and velocity dependent friction314

model, which indicates the dynamic coefficient of friction is mostly constant315

during sliding, and can be approximated by the Coulomb friction model.316

Figure 7(b) compares the relationship between the volume of the landslides317

from other studies and coefficients of friction obtained by: (1) the numerical318

simulation benchmarked by the deposits (Kuo et al. 2009; Tang et al. 2009; Kuo319

et al. 2011; Lucas et al. 2014), (2) the numerical simulation benchmarked by320
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the seismic signals (Moretti et al. 2015, this study), and (3) the force history of321

seismic waveform inversion (Brodsky et al. 2003; Allstadt 2013; Yamada et al.322

2013). Smaller, rockfall-type landslides (Volume 102-103 m3) show a coefficient323

of friction of 0.6-0.7, whereas larger, deep-seated landslides (Volume > 107324

m3) show a coefficient of friction smaller than 0.3. This is consistent with past325

observations based on field surveys, which show that the larger landslides tend326

to have a smaller apparent coefficient of friction (Scheidegger 1973; Hsü 1975;327

Dade and Huppert 1998).328

We obtained similar coefficients of friction for the landslides with similar329

scale and geology. They are consistent with the empirical relationship between330

the volume and dynamic coefficient of friction obtained from past studies. This331

hybrid method of the numerical simulation and seismic waveform inversion332

shows the possibility of reproducing or predicting the movement of a large-333

scale landslide. However, direct observations of landslide movement, such as334

velocity, are required to verify these dynamic parameters.335

5.2 Velocity history and Energy partition336

Figure 9 shows the velocity history at the center of mass for the most proba-337

ble velocity dependent friction model. The Akatani landslide shows the largest338

velocity with 35.4 m/s, but other landslides also show a velocity greater than339

10 m/s. Although the maximum velocity and duration vary depending on the340

landslides, the macroscopic behavior, acceleration and deceleration phases, are341

similar for all landslides. As discussed in Yamada et al. (2013), the acceler-342
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ation phase represents the movement of the mass down the slope, and the343

deceleration phase represents the stopping of the mass at the bottom of the344

slope. This acceleration/deceleration waveform is typical in simple decreasing345

slope topography such as V-shaped valleys made by erosion (e.g. Yamada et al.346

2013; Hibert et al. 2015). More complex topography generates more fluctuating347

velocities (e.g. Schneider et al. 2010; Moretti et al. 2012; Allstadt 2013).348

One of the advantages of this hybrid approach is to obtain the transition of349

the potential and kinetic energies directly from deposit and velocity snapshots.350

Landslide motion involves a cascade of energy that begins with gravitational351

potential energy transferred to kinetic energy, and eventually, all energy will352

be dissipated by the heat energy and fracture energy caused by grain contact353

friction and inelastic collisions (Iverson 1997). This energy transition depends354

significantly on the natural topography and materials (rock type and fluid),355

so estimating the movement of a landslide in advance has difficulty even if we356

know the precise topography of the slope.357

Figure 10 shows the relationship between the elevation change of the DEM358

(h) and maximum velocity (v) at the center of mass estimated from our nu-359

merical simulations. It shows the linear relationship for this volume range,360

with v = 2
√
h = 0.45 ×

√
2gh. Ekström and Stark (2013) also provide these361

parameters obtained from the seismic waveform inversions and show the con-362

sistent relationship with our dataset (Figure 10). The elevation change at the363

center of mass is relatively available from DEM even before the landslide so364

the maximum velocity can be estimated from this relationship. It also sug-365
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gests the ratio of potential energy transferred to the kinetic energy is about366

constant, even if the size of the landslide is different. Suppose the total poten-367

tial energy is converted to the kinetic energy under unrealistic conditions, we368

obtain v =
√
2gh. For our empirical relationship, about 20% (=0.452) of the369

potential energy was converted to the kinetic energy. Our analysis provides370

the relationship between kinetic energy and the potential energy empirically371

for future landslide hazard analysis.372

5.3 Limitations and Potential Applications for Hazard Analysis373

Here we summarize the potential causes of uncertainties of this approach to374

estimate the dynamic coefficient of friction. First of all, the accuracy of the375

DEM is important. The DEM created by the photogrammetry had poor reso-376

lution and caused uncertainty in the deposit distribution of Figures 8(b) and377

(d). If the mass of the landslide before sliding and the deposits of the landslide378

after sliding overlap, the sliding surface cannot be obtained by the DEMs, and379

that causes an error of about 10% in the volume estimation.380

A large long-period seismic signal was produced at the beginning to middle381

stage of landslide movement, and a short-period seismic signal was dominant382

at the end of sliding. Therefore, the calibration by the seismic signal strongly383

depends on the early stage of the landslide. The coefficient of friction during384

the main sliding is relatively well calibrated, but the friction at the end of385

the landslide, when the effect of excess pore pressure are significant, has poor386

resolution. This effect and lack of key physical processes in the numerical387
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models (fragmentation, erosion, presence of fluids, etc.) may explain why the388

extent of the deposit is difficult to reproduce by our friction law.389

Despite the limitations, this empirical friction law can provide useful in-390

sights for future landslide hazard analysis. The movement of a landslide can391

be computed by the SHALTOP numerical model, once the topography of392

hillslopes and mass distribution are obtained. The horizontal extent of the393

potential area of future landslides can be obtained from the geomorphic in-394

terpretation for signals of deep-seated gravitational deformation of bedrock395

appearing on the ground surface using a high-resolution digital topographic396

model (Chigira et al. 2013). The thickness of the unstable mass can be esti-397

mated by the empirical relationship between the surface area and depth of the398

past landslides. The simulation can also be calibrated by the relationship be-399

tween the elevation change of the deposit and maximum velocity at the center400

of mass in this study. The numerical simulation provides a reliable velocity of401

a landslide since the force acting on the sliding surface is calibrated by seis-402

mic records, however, mass fragmentation, erosion, and pore water, should be403

carefully examined to better estimate the extent of the runout.404

6 Conclusions405

We performed seismic waveform inversions and numerical landslide simulations406

of deep-seated landslides in Japan to understand the dynamic evolution of407

friction of the landslides. By comparing the forces obtained from numerical408

simulation to those resolved from seismic waveform inversion, the coefficient409
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of friction during sliding was well constrained between 0.3 and 0.4 for landslides410

with volume of 2-8×106 m3.411

We obtained similar coefficients of friction for landslides with similar scale412

and geology. They are consistent with the empirical relationship between the413

volume and dynamic coefficient of friction obtained from past studies. This414

hybrid method of the numerical simulation and seismic waveform inversion415

shows the possibility of reproducing or predicting the movement of a large-416

scale landslide.417

Our numerical simulations allow us to estimate the velocity distribution at418

each time step. The maximum velocity at the center of mass shows a linear419

relationship with the square root of the elevation change at the center of mass,420

which suggests that they can be estimated from the initial DEMs. About 20%421

of the total potential energy is transferred to the kinetic energy in our volume422

range.423

The combination of the seismic waveform inversion and the numerical sim-424

ulation helps to obtain the well-constrained dynamic coefficients of friction425

and velocity distribution during sliding, which will be used for the numerical426

model to estimate the hazard of potential landslides.427

Table 1 Landslide properties.

Name Time (JST) Vol. (m3) L (m) H (m) LCM (m) HCM (m) Slope DEM
Akatani 16:23, 9/4, 2011 7.38×106 1100 640 514 265 34◦ 1m/1m
Iya 06:54, 9/4, 2011 4.67×106 610 300 217 76 24◦ 10m/1m
Nagatono 10:45, 9/4, 2011 3.63×106 610 400 281 144 33◦ 1m/1m
Nonoo 21:49, 9/6, 2005 2.72×106 460 270 138 65 31◦ 10m/1m

The indices are: occurrence time, volume, horizontal hillslope length, vertical hillslope
relief, horizontal displacement at the center of mass, elevation change at the center of mass,
average slope angle, and resolution of DEM (before/after), from the left.
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Table 2 Simulation results.

Name
Waveform inversion Numerical simulation

Freq. (Hz) Force (N) µconst µ̄dyn (µo, µw , Uw) Vel. (m/s)
Akatani 0.01-0.1 5.22*1010 0.30 0.30 (0.6,0.24,4) 35.5
Iya 0.016-0.1 1.09*1010 0.32 0.30 (0.7,0.28,0.5) 12.2
Nagatono 0.02-0.1 1.65*1010 0.40 0.39 (0.7,0.34,3) 21.2
Nonoo 0.01-0.1 1.23*1010 0.36 0.32 (0.7,0.20,4) 13.6

The indices are: frequency range for the waveform inversion, maximum force in the vector
sum estimated from the waveform inversion, the best coefficient of friction for Coulomb
friction model, the mean dynamic coefficient of friction for the velocity dependent friction
model, parameters for the velocity dependent friction model, and maximum velocity at the
gravity center, from the left.
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Fig. 6 The time history of the average coefficient of friction for each model in Figure 5.
Colors indicate the residual of each model. The white dashed line shows the model with the
minimum residual.
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Additional Supporting Information (Files uploaded separately)

Captions for Movies S1 to S3

Introduction The supporting information contains five figures and three movies. The

movies show the result of the numerical simulation.

Movie S1. The snapshots of the height of the mass of each grid for the numerical

simulation of the Iya landslide with velocity dependent friction law.

Movie S2. The snapshots of the height of the mass of each grid for the numerical

simulation of the Nagatono landslide with velocity dependent friction law.

Movie S3. The snapshots of the height of the mass of each grid for the numerical

simulation of the Nonoo landslide with velocity dependent friction law.
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Figure S1: Seismic waveforms of the Iya landslides. (a) Estimated single-force source time
functions for the EW, NS, and UD components. The windows used for a gridsearch of the best
friction model is shown under the waveforms. (b) Displacement waveform fits between observed
(black) and synthetic (red) data obtained from the source inversion. The letters on the left
show the station code, and the numbers in the top right show the maximum and minimum
amplitudes. The normalized residual of the waveform inversion is also shown at the bottom.
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Figure S2: Seismic waveforms of the Nagatono landslides. The format is the same as Figure S1.
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Figure S3: Seismic waveforms of the Nonoo landslides. The format is the same as Figure S1.
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