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Abstract:
This study collects recorded ground motions from the near-source region
of large earthquakes and considers to what extent this historic record can
inform expectations of future ground motions at similar sites. The distri-
bution of observed peak ground acceleration (PGA) is well approximated
by the lognormal distribution, and we expect the observed distribution
to remain unchanged with the addition of data from future earthquakes.
However, the distribution of peak ground displacements (PGD) will likely
change after a well recorded large earthquake. Specifically we expect fu-
ture observations of PGD greater than those previously recorded. We use
seismic scaling relations to motivate the expected distribution of PGD as
uniform on the logarithmic scale, or at least fat-tailed. Since PGA does not
scale with fault rupture area or slip on the fault, there are no such scaling re-
lations to predict the observed distribution of PGA. The observed records
show that there is essentially no correlation between PGD and PGA for
near-source ground motions from large events. The large uncertainty in a
future value of PGD in the near-source region of a large earthquake ex-
ists despite the ability of earth scientists to accurately model long-period
ground motions. In contrast, the relative certainty in a future value of
PGA exists despite the inability to model short-period ground motions reli-
ably. The stability of the observed distribution of PGA with respect to new
ground motion records enables us to predict the distribution of future PGA
and to calculate the probability of exceeding the largest recorded PGA.

1 Introduction

The current practice of seismic structural design assumes an expectation of future ground motions.

An engineer first defines the likely and most severe ground motions that may excite a structure at a
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particular site in its anticipated lifetime. Then the engineer specifies a lateral force resisting system

with a capacity sufficient to withstand these expected demands. This approach to design problems

works well if the definition of future ground motions is reliable. Unfortunately, predicting the

future is a notoriously difficult endeavor.

Past experience primarily informs the seismic design of structures. ASCE 7-05, the standard

adopted by the 2006 International Building Code for seismic design, requires the use of at least

three recorded ground motion time histories for structural designs based on seismic response histo-

ries (American Society of Civil Engineers, 2006). If there are fewer than three appropriate recorded

ground motions, simulated motions may be used to meet the requirement. Also, structural engi-

neers develop their judgments through their own experiences and the experiences of their pre-

decessors. Experience and the historic record may be necessary, but not sufficient, evidence for

anticipating the future ground motions at a given site. This study considers the extent to which

recorded ground motions can inform the prediction of future ground motions.

Throughout this study we distinguish ground motions dominated by short-period versus long-

period energy content. All seismic ground motions can be decomposed according to the relative

amounts of energy in harmonic waves of every period. Generally speaking, the energy in ground

motions from smaller, more frequent earthquakes is mostly from the short-period content, whereas

the energy in ground motions from larger, less frequent earthquakes is primarily in the long-period

content. This distinction between short- and long-period energy also categorizes a structure as

short- or long-period according to the structure’s fundamental period. The lateral force-resisting

system of a structure with a short fundamental period tends to be susceptible to short-period ground

motions. Similarly, a structural system with a long fundamental period is particularly sensitive to

long-period ground motions.

This study collects recorded ground motions from the near-source region of large earthquakes

and considers to what extent this historic record can inform expectations of future ground mo-

tions at similar sites. We find that future peak ground accelerations (a good intensity measure for

short-period ground motions) can be readily predicted from existing records, but the experience

of past large earthquakes does not adequately predict future peak ground displacements (a good

intensity measure for long-period ground motions). These observations directly affect the design

of structures, since building codes rely explicitly or implicitly on recorded ground motions: ex-

isting measures of peak ground acceleration from records are a reliable predictor of future peak

ground accelerations, but future peak ground displacements may differ significantly from measures

of peak ground displacement from existing records.
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2 Data

We collect ground motions from ten historic earthquakes to generate distributions of observed peak

ground acceleration and displacement. Specifically, we use ground motions only from earthquakes

with magnitudes greater than 6.0 and from sites in the near-source. We define the near-source

region to be within 10 km of the surface projection of the fault rupture. We choose this number be-

cause it is small enough to demonstrate the source scaling, but large enough to include a sufficient

number of records to characterize the statistics. We disregard the soil class at the instrumented

sites.

Table 1 lists important features of the data set. The earthquakes include the major events in the

years 1979 through 2004. The data set covers a range in moment magnitude from 6.0 to 7.8, with

wide gaps between 6.0 and 6.5 and between 6.9 and 7.3. Nonetheless, the data well represent the

ground motions of interest. The Chi-Chi and Parkfield earthquakes are well recorded, each with

over forty near-source records. (In fact, the Chi-Chi strong ground motion data set is the largest for

a major earthquake (Shin and Teng, 2001).) However, the Landers, Hyogoken-nanbu, Izmit, and

Denali ruptures are poorly recorded, since each has fewer than five near-source records. Table 1

also lists the focal depth of each hypocenter, ranging from 12.0 km to 21.2 km, as well as the fault

rupture model used to define the near-source area.

We obtained ground acceleration time histories from several databases around the world. The

COSMOS Virtual Data Center, which includes the California Strong Motion Instrumentation Pro-

gram and the United States Geological Survey seismic networks, was the source for ground mo-

tions from the Imperial Valley, Loma Prieta, Landers, Northridge, Denali, and Parkfield earth-

quakes. The ground motions for the Hyogoken-nanbu earthquake were from: the Japan Meteo-

rological Agency; the Committee of Earthquake Observation and Research in the Kansai Area in

Japan (Toki et al., 1995); and the Japan Railway Institute, whose records were scanned and dig-

itized by Wald (1996). (Seismometers in the CEORKA network record velocity, but CEORKA

processes the records to provide acceleration time histories.) The national strong-motion network

in Turkey recorded ground motions in the Izmit earthquake (Akkar and Gülkan, 2002), and we

collected them from two sources: the Earthquake Research Department of the General Direc-

torate of Disaster Affairs in Turkey (Earthquake Research Department, 2004); and the COSMOS

Virtual Data Center, which archived records from the National Earthquake Monitoring Center,

Kandilli Observatory and from the Earthquake Research Institute, Bŏgaziçi University. The Cen-

tral Weather Bureau Seismic Network in Taiwan recorded the ground motions for the Chi-Chi

earthquake, and Lee et al. (2001) disseminated them. The K-NET (Kyoshin Net, 1996) and KiK-

net (KiK-net, 2000) seismic networks, operated by the National Research Institute for Earth Sci-

ence and Disaster Prevention in Japan, were our sources for the strong ground motions of the
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Niigataken-chuetsu earthquake.

The geographic distributions of instrumented sites in the near-source regions are not uniform.

The density of sites per near-source area is not constant for all events, and the sites do not evenly

represent all near-source regions. For nine of the ten earthquakes used in this study, Yamada et al.

(2007) showed the sites in comparison to the fault rupture surface projection and the near-source

region. As examples of particularly poor distributions of instrumented sites (for our purposes),

many of the ground motions from the 1979 Imperial Valley earthquake are from sites forming

a line perpendicular to the fault, and most ground motions from the 1999 Chi-Chi earthquake are

from sites on the foot wall. Despite the non-uniform geographic distribution of the recorded ground

motions, we treat each record as a sample of the ground movement in the near-source region.

To determine the peak ground acceleration and displacement of a recorded ground motion, we

process each time history. We first remove the bias from the acceleration record by subtracting

the mean of the pre-event interval. Then we integrate twice to generate the displacement time

history. We remove the longest period content of the displacement time history with a fourth-

order Butterworth filter (13.3 s corner period) to avoid problems caused by a shift in the baseline.

Filtering in this way can produce a peak ground displacement smaller than what would have been

calculated from the unfiltered record. Nonetheless, these filtered records still contain rich long-

period content. We then find the square root of the sum of the squares of the north-south and

east-west components at each time step of the record. The peak ground measure is the largest

such value over all time steps. This measure of peak ground motion is also known as the vector

amplitude (Kanno et al., 2006). Yamada (2007) compared PGAs and PGDs calculated from the

horizontal components or from the vertical component and found that they have a similar trend

with respect to moment magnitude. We use only the horizontal components to calculate the peak

values since most engineered structures are more vulnerable to lateral than vertical excitation.

In addition to the recorded ground motions, we also consider a recurrence of the 1906 San

Francisco earthquake. We use the simulated ground motions generated by Aagaard et al. (2008)

closest to sites in the California Integrated Seismic Network as of December 2007. To be consistent

with the choice of recorded ground motions, we only include sites within 10 km of the historic

rupture on the San Andreas fault. These selection criteria result in 87 “records” of a recurrence of

the 1906 San Francisco earthquake. These ground motions are long period (periods greater than

2 s), so we use a fourth-order Butterworth filter (25.0 s corner period) and calculate only the peak

ground displacement of each record.
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3 Observed Distributions of PGA and PGD

For our collected set of recorded ground motions, Figure 1 plots the peak ground accelerations

and displacements as functions of the moment magnitude of the generating earthquake. Each data

point is denoted with a symbol, and the least squares regression lines for the peak ground measures

as functions of magnitude are shown. At each magnitude, the peak ground acceleration (PGA) and

peak ground displacement (PGD) data are approximately lognormally distributed about their re-

spective regression lines. Note that PGA saturates at magnitudes greater than 6.0, as evidenced by

the approximately zero slope of the regression line. The saturation of short-period ground motions

in the near-source has been observed previously by Rogers and Perkins (1996) and Somerville

(2003). In contrast, the logarithm of PGD increases linearly with respect to magnitude, with a

slope of 0.6. Previous studies have discussed this linear trend (e.g., Wells and Coppersmith, 1994;

Campbell and Bozorgnia, 2008). We expect this slope to be in the range of 0.5 to 0.75 based on

the following argument.

Given the definition of seismic moment,M0, (logM0 = logµ + logSD) and the relationship

between seismic moment and moment magnitude,Mw, (logM0 = 3
2 (Mw +10.73)), we find:

logSD =
3
2

(Mw +10.73)− logµ, (1)

whereS is the rupture area,D is the average slip, andµ is the crustal rigidity. If we assume the

rupture area is approximately the square of the rupture length (reasonable for small to moderate

earthquakes (Aki, 1972; Kanamori and Anderson, 1975)) and PGD is proportional to the average

slip, Equation 1 implies that:

logPGD=
1
2

Mw +a constant.

If we assume the rupture area is proportional to the rupture length (reasonable for large earth-

quakes, (Scholz, 1982)) and PGD is proportional to the average slip again, Equation 1 then implies

that:

logPGD=
3
4

Mw +another constant.

Thus we expect the slope of the relationship between the logarithm of PGD and moment magnitude

to be between 0.5 and 0.75 for the combination of moderate and large earthquakes.

As mentioned previously, PGA is known to saturate at magnitudes greater than 6, and the log-

arithm of PGD is known to increase linearly with respect to magnitude. Thus, there is essentially

no correlation between these two intensity measures for near-source ground motions from large

events. Figure 2 plots PGA versus PGD for the near-source records used in this study and for

additional far-source records. The far-source PGDs and PGAs are from ground motions recorded
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in magnitude greater than 6 earthquakes at distances greater than 10 km from the fault. Unlike the

far-source records, the near-source PGD and PGA are very weakly correlated.

Figure 3 compares the marginal distributions of PGA and PGD to a base-10 lognormal distribu-

tion. The histogram of the PGA data is consistent with a lognormal distribution: on a logarithmic

scale, the PGA data are clearly peaked, symmetric about the mean, and have thin tails. This obser-

vation is consistent with Figure 1 since the mean PGA is approximately constant for magnitudes

greater than 6.0, and the PGA data appear to be lognormally distributed about the mean with

constant variance. The near-source PGA of earthquakes with magnitude greater than 6.0 can be

approximated by the lognormal distribution:

p(PGA) ∝
1

0.56PGA
√

2π
e−(lnPGA−ln(4.64))2/0.64, (2)

where ln represents the natural logarithm. The histogram of the PGD data, however, is inconsistent

with a lognormal distribution: on a logarithmic scale, the PGD data are roughly uniform over the

range of observed PGD. The PGD data are not peaked because the mean PGD is correlated with

magnitude. At a given magnitude, the PGD data appear lognormally distributed, but since the

mean increases with magnitude, the projection of the data as a marginal distribution becomes more

uniform than peaked.

Figures 4 and 5 are histograms of the PGA and PGD data, respectively. For the PGA data,

we show a subset of the observed data with the Chi-Chi data removed as well as the full data

set. The distribution of the subset without the Chi-Chi data appears lognormal. The addition of the

Chi-Chi data does not change the shape of the distribution; including the Chi-Chi PGA data simply

increases the height of the histogram. This exercise suggests that a lognormal distribution is a good

approximation for existing, recorded PGA at near-source sites in earthquakes with magnitudes

greater than 6.0, and this distribution will remain approximately lognormal with the addition of

future data. The saturation of PGA at large magnitudes supports our claim: since the mean and

standard deviation of PGA are approximately constant for each large earthquake, data from future

earthquakes will also have the same mean and standard deviation and thus cannot change the shape

of the PGA distribution.

Now consider the observed distribution of PGD in Figure 5. Similar to the analysis of the PGA

data, we show the distribution of PGD for a subset of our recorded data set that does not include

ground motions from the Chi-Chi earthquake. This distribution is roughly uniform on a logarithmic

scale over the range of this subset. Adding the PGDs from the Chi-Chi earthquake extends the

range of PGD at large values; there are several PGDs from the Chi-Chi ground motions that are

larger than observations from other large earthquakes. The spread in the distribution of observed

near-source PGD widens notably with the inclusion of this single earthquake.
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We use a simulation of ground motions in the 1906 San Francisco earthquake to imagine the

effect of the next large, well-recorded earthquake on this distribution of PGD. If the 1906 earth-

quake recurred and was recorded with existing instrumentation, Figure 5 shows the effect on the

“observed” distribution. The simulated data add to the histogram at the largest observed PGDs. In

other words, many of the simulated PGDs are in the range of the largest recorded PGDs. Certainly

the next large, well-recorded earthquake will not be a repeat of the 1906 San Francisco earthquake,

but a future rupture has the potential to produce numerous recorded ground motions with PGDs at

the high end of, or greater than, those recorded at present.

Earthquakes with magnitudes greater than 6.0 change the observed distribution of PGD, either

by extending the distribution or by adding data at previously recorded values. The increase of PGD

with magnitude (Figure 1) helps to explain this point. Although PGD is lognormally distributed at

a given magnitude, the mean of the logarithm of PGD increases linearly with magnitude. Thus, the

magnitude of each event determines where its observed PGDs add to the distribution of PGD from

all events, either beyond the observed range or within it. This finding is in contrast to our statements

about the distribution of PGA: records from future, well-recorded earthquakes will not change the

observed distribution of PGA, whereas they may change—and many change substantially—the

observed distribution of PGD.

4 Theoretical Distributions of PGA and PGD

In this section we first use empirical scaling relationships to derive the expected marginal distribu-

tion of PGD in the near-source region of large earthquakes. First, we assume that the number of

earthquakesN with magnitudes greater thanM is given by the Gutenberg-Richter relationship:

N = 10a−bM =
∫ ∞

M
NM dM, (3)

whereNM is the number of earthquakes with magnitude betweenM andM + ∆M. In a different

form,

NM = − dN
dM

= bln(10)10a−bM = 10A−bM, (4)

where 10A , bln(10)10a, a constant. The moment magnitude can be rewritten in terms of the

seismic moment,M0, which is equal to the product of the crustal rigidity,µ, average slip on the

fault, D, and the area of fault rupture,S:

Mw =
2
3

log10M0−10.73=
2
3

log10

(
µDS

)
−10.73.

Thus,

NM = 10A+10.73b10−
2
3blog10(µDS)

= C
(
DS

)− 2
3b

,
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whereC , 10A+10.73bµ− 2
3b, a constant.

One of two assumptions can be made at this point, depending on the size of the earthquake.

For moderate earthquakes, the fault rupture length,L, is approximately equal to the fault rupture

width, which implies that the fault rupture area is approximatelyL2. For large earthquakes, the

rupture length is much larger than the approximately constant rupture width, which implies that

the rupture area is proportional to the rupture length. We also assume in both cases that the average

slip on the fault is proportional to the length of the fault rupture. Thus,

NM ∝

{ (
DL2

)− 2
3b

if S≈ L2 (moderate earthquakes)(
DL

)− 2
3b

if S∝ L (large earthquakes)

∝

{
D
−2b

D
− 4

3b
.

The total rupture area for all earthquakes of magnitudeM is:

NMS

{
≈ NML2 ∝ D

−2b
D

2 b=1= constant

∝ NML ∝ D
− 4

3b
D

b=1= D
− 1

3 .
(5)

Assuming a uniform geographic distribution of seismic instrumentation, Equation 5 implies that

the total number of near-source records at a particular magnitude is either constant or weakly

dependent on magnitude, depending on the assumed geometry of the fault rupture. Furthermore,

the peak ground displacement in the near-source is proportional to the average slip on the fault

(Aagaard et al., 2001). These results can be combined with the observations from Figure 1 to

generate a rough approximation of the marginal probability density function for the logarithm of

PGD.

If we assume the rupture area is approximately square (that is, consider moderate earthquakes),

then the total number of near-source records is constant for all magnitudes. Given enough time, all

magnitude 6 earthquakes will produce the same number of near-source records as all magnitude 7

earthquakes or all magnitude 8 earthquakes. Figure 6 (top) combines this result with the observa-

tions that the mean PGD increases with magnitude and PGD is lognormally distributed at a given

magnitude. The resulting marginal distribution of PGD is approximately uniform because the total

number of recorded ground motions is constant for all magnitudes.

Alternatively, if we assume the rupture length is much larger than the rupture width (that is,

consider large earthquakes), then the total number of near-source records decreases with magni-

tude, since magnitude depends on average slip. Figure 6 (bottom) shows the relative number of

near-source ground motions at each magnitude given that the total number is proportional to the

mean PGD raised to the negative one-third power. The resulting marginal distribution of PGD is

not uniform, but it is also not lognormal; it is something in-between the two.
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We cannot develop a similar argument for the marginal distribution of PGA because the rela-

tionship between PGA and faulting is not clear. At this time, seismologists are developing finite

element models to simulate broadband ground motions and thus predict PGA in the near-source

region. However, these models require sophisticated fault and velocity models to propagate short-

period seismic waves or require a stochastic description of PGA. Unlike PGD, which can be related

to slip on the fault, it is difficult to use a fundamental, physical understanding of faulting and wave

propagation to predict PGA. Yamada et al. (2007) shows that the distribution for near-source PGA

seems to be compatible with the hypothesis that the total radiation of high-frequency energy scales

with the rupture area. This hypothesis is consistent with the observation that the PGA weakly

depends on the slip on the fault.

5 Expectation of the Largest PGA and PGD

An important question for the design of an engineered structure is: what is the largest expected

ground motion at the site of interest? This question can be reformulated as: what are the largest

expected PGA and PGD at a site within 10 km of a fault capable of producing at least a magnitude

6 earthquake? The analyses of observed PGAs and PGDs presented in this paper should inform the

answer to this question. We have shown that the empirical distribution of PGA is approximately

lognormal and stable with respect to new data, but at present, there is no theoretical basis to ex-

plain this observation. The empirical marginal distribution of PGD changes after well-recorded

earthquakes, and seismic scaling relations suggest that the marginal distribution of PGD is roughly

uniform on a logarithmic scale. Thus, we can readily address the question of the largest expected

PGA, but determining the largest expected PGD is not clear.

We consider the historic deployment of seismic instrumentation to place recorded peak ground

measures in context. Figure 7 shows the history of the largest recorded PGA as well as the es-

timated number of seismic stations in the United States and Japan. (In this section, we calculate

PGA from three orthogonal components of ground motion instead of two horizontal components,

as calculated in all other sections.) We collect this information from several sources. Çelebi et al.

(1999) report the largest recorded PGA until 1999. Trifunac and Todorovska (2001) tally the num-

ber of seismic stations before 1982. We estimate the current number of seismic stations in the

United States from the United States Geological Survey and California Strong Motion Instrumen-

tation Program websites. The current number of seismic stations in Japan is the sum of K-NET

(Kyoshin Net, 1996), KiK-net (KiK-net, 2000), and Japan Meteorological Agency instrumenta-

tion. After an interval of 23 years, the largest recorded PGA increased by about a factor of two

in 2008 (Aoi et al., 2008). A larger number of seismic instrumentation makes a record of PGA

in excess of one previously recorded more likely. However, the empirical marginal distribution of
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PGA suggests that it will become increasingly more difficult to record ever larger PGAs, as such

extreme PGAs are vanishingly unlikely.

To quantify the probability of observing a PGA in excess of the current largest value, we

account for an increase of instrumentation and the observed distribution of PGAs. Following

Section 3, we assume that the lognormal distribution with meanm and standard deviationσ ap-

proximates the future distribution of PGA. Thus, the probability that one measure of PGA is less

thanx is given by the cumulative distribution function:

F(x) =
1
2

+
1
2

erf

[
ln(x)−m

σ
√

2

]
. (6)

We assume that records of PGAs in the near-source of major earthquakes are independent with

respect to space and time. Therefore, if there areny independent measures of PGA in yeary, then

the probability that none exceedsx is F(x)ny, and the probability that at least one measure in the

nextY years exceedsx is:

P(PGA> x) = 1−
Y

∏
y=1

F(x)ny. (7)

The number of recorded PGAs is the product of the station density, the near-source area, and

the number of earthquakes in a given year. We assume the station density,ρ(y), is a function of the

year but uniform in space. We also assume that the fault rupture area approximates the near-source

area, and we use the empirical relationship from Irikura and Miyake (2001):

S= 100.75M−2.29, (8)

whereS has a unit of km2. The Gutenberg-Richter frequency-magnitude relationship defines the

expected number of earthquakes in any time period, taken here as one year. Therefore:

ny = ρ(y)
∫ MU

ML

SNMdM (9)

= ρ(y)10A−2.29
∫ MU

ML

10(0.75−b)MdM (10)

=
ρ(y)10A−2.29

(0.75−b) ln(10)

[
10(0.75−b)M

]MU

ML

, (11)

whereMU andML are the upper and lower bounds of the considered range of magnitudes. The

probability that a recorded PGA will exceed a valuex in the nextY years can be calculated from

Equation 7, with substitutions of Equations 8 and 9.

We calculate the probabilities of recording a PGA greater than 20 m/s2 (approximately the pre-

2008 largest PGA) and greater than 40 m/s2 (approximately the current largest recorded PGA). We
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let m = 1.53 andσ = 0.57, based on the empirical distribution of PGA (Figure 3). We assume

the station density increases by 5% ofρ0 per year, soρ(y) = ρ0(1.05∗ y). Since the current

station density in Japan is roughly spaced at 15 km, we estimate the current station density as

ρ0 = 0.004stations/km2. We let A = 7.0, as determined from the seismic catalog of Japanese

crustal earthquakes in 2008, andb = 1.0, sinceb is typically close to this value. We consider

earthquakes on the intervalML = 6 to MU = 8.5.

Figure 8 shows the probabilities that a recorded PGA exceeds 20 m/s2 or 40 m/s2 in the next 0 to

100 years. Given that another recorded PGA in excess of 20 m/s2 is more than likely in the next 30

years, it is not surprising that there are currently two such records from the past seventy-five years

of ground motion observations. However, the probability of a future PGA greater than 40 m/s2 is

only 10% in the next fifty years, assuming a steady increase in station density of 5% ofρ0 per year.

Aoi et al. (2008) and Yamada et al. (2009) proposed a physical mechanism for extremely large

vertical accelerations. This may explain future records with PGAs much larger than the current,

largest recorded PGA. Since we have shown in the previous section that the empirical distribution

of PGA is stable with respect to new data and well characterized by a lognormal distribution, we

can use this distribution to quantify the probabilities that future records of PGA will exceed the

previous and current largest recorded values. This type of analysis could be used to predict reliably

future large PGAs in the near-source of active faults capable of producing at least a magnitude 6

earthquake.

A similar analysis cannot be developed at present for PGD. We have shown that the empirical

marginal distribution of PGD changes with well-recorded earthquakes. Therefore, this distribution

alone is inadequate to predict future PGDs. Furthermore, seismic scaling relations suggest that

very large PGDs are roughly as numerous as large PGDs; the distribution of PGD is fat-tailed. We

expect that the probability of recording large PGDs—for example, in excess of 5 m or 10 m—in

the next fifty years is not negligible. Nonetheless, there must be an upper-bound to the marginal

distribution of PGD based on a physical limit to PGD. We do not propose a value for this physical

limit.

6 A Paradox

This discussion of predicting PGA and PGD from the fundamentals of faulting and wave propa-

gation leads directly to a paradox: the PGA in a future earthquake can be easily predicted from

past earthquakes even though short-period ground motions cannot be easily simulated, whereas the

PGD in a future earthquake cannot be predicted even though long-period ground motions are rou-

tinely simulated. Given only the information that a site is in the near-source of an earthquake with
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magnitude greater than 6.0, the recorded ground motions used in this study show that PGA is well

approximated by a lognormal distribution, but the distribution of the logarithm of PGD is roughly

uniform with an unknown point of truncation. Thus, using past observations of ground motions

can produce a relatively certain prediction of PGA and a quite uncertain prediction of PGD. This

is in contrast to the present capabilities of simulating ground motions. Long-period ground mo-

tions can be readily generated from models of faults and seismic velocity structures. Currently,

however, generating short-period ground motions is not routinely done as it requires much more

detailed models or stochastic descriptions.

The resolution of this paradox considers the assumed information. Simulating ground motions

assumes a magnitude and either generates a slip distribution (dynamic source modeling) or assumes

a slip distribution (kinematic source modeling). Our study of recorded ground motions assumes

only that the earthquake has a magnitude greater than 6.0. Knowing the magnitude does not help

predict the PGA since PGA saturates with magnitude, but knowing the magnitude helps to predict

PGD since the logarithm of PGD is proportional to the magnitude. However, we need to predict

more than the magnitude of future events; the near-source PGD is best predicted by slip on a near-

by segment of a fault. Thus, the ability of seismologists to generate reliable long-period ground

motions (and thus reliable predictions of PGD) in an earthquake of known magnitude does not

imply that they can predict the PGD in the next large-magnitude earthquake, unless they can also

reliably predict slip.

7 Implications for Seismic Risk

Engineers often use ground motion intensity measures in place of full time histories to predict

seismic structural responses. Although the interaction of the complete ground motion time his-

tory with the structure defines the response, a characteristic of the ground motion—as measured

by the intensity measure—is often sufficient to predict the structural response for many types of

structures. The most common intensity measure is spectral acceleration at the fundamental period

of the structure (abbreviatedSa(T1)). Other scalar and vector intensity measures based on spectral

quantities have been proposed as well (for example, Baker and Cornell (2005) and Luco and Cor-

nell (2007)). For six- or twenty-story, steel, moment-resisting frames, Olsen (2008) showed that,

among the considered intensity measures, the peak inter-story drift ratio was best predicted by

Sa(T1), assuming that the lateral force-resisting system was not compromised. However, large per-

manent drifts and collapse due to P-∆ are predicted better by a combination of large peak ground

velocity (PGV) and PGD. Near-source ground motions with large PGDs are almost always accom-

panied by large PGVs. Thus, in the near-source region, PGDs are often associated with simulated

collapse. Thus, althoughSa(T1) is widely used as an intensity measure, there is evidence that an
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alternate intensity measure may predict structural response better, depending on the structure type

and response of interest.

The maximum value of the appropriate intensity measure likely to be experienced at a site

is often of interest for seismic risk assessment. This maximum value depends on an expectation

of future ground motions, which is informed by existing recorded ground motions as well as the

current understanding of the physical mechanisms. This study shows that the maximum likely

PGA within 10 km of a fault that produces a magnitude greater than 6.0 earthquake can be reliably

derived from a lognormal distribution, since the empirical marginal distribution of such PGAs

is stable with respect to new records and consistent with a lognormal distribution. Determining

the maximum likely PGD in the same geographic region is more problematic given the available

recorded ground motions with large PGDs. This study shows that the current empirical marginal

distribution of PGD is fat-tailed, if not uniform on a logarithmic scale to a physical limit. This

physical limit has not yet been determined, and simulation of ground motions from plausible large

earthquakes (for example, the repeat of the 1906 San Francisco earthquake) suggest that the next

large, well-recorded earthquake will contribute several measured PGDs between the current largest

recorded PGDs and the suspected physical limit. Given this evidence, we find the calculation of

the maximum likely PGD difficult—if not impossible—given the current knowledge.

These results have a direct bearing on seismic risk assessment. If the appropriate intensity

measure for a structural response of interest is PGA, then recorded ground motions with the largest

observed PGAs can be used as representative of future ground motions with the largest PGAs. The

predicted structural responses based on existing large PGAs would be reliable even after the next

large earthquake. However, if the appropriate intensity measure is PGD, the largest observed PGDs

may not be representative of the future largest PGDs. Consequently, structural responses based on

the largest recorded PGDs may not be representative of structural responses in the future largest

PGDs. Consider tall buildings as an example. Their response to ground motions with PGDs of

0.2 m or 2 m or 10 m range from elastic to catastrophic failure. If this type of building is located

within 10 km of an earthquake with magnitude greater than 6, each response is roughly equally

likely if each level of ground motion is approximately equally likely. This study provides evidence

to caution against assuming that recorded ground motions with the largest PGDs are representative

of unrecorded or future ground motions with the largest PGDs.

This study supports the argument made in Heaton (2007). Among other questions, Heaton

(2007) asks whether the current structural design philosophy of performance-based earthquake en-

gineering is appropriate for the design of long-period structures. PBEE assumes that the reliability

of a structure’s performance—be it, seismic response or lifetime cost—can be predicted during

the design phase. Heaton (2007) points out that such a reliability analysis is credible only if the
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hazard is well-described by a knowable and finite uncertainty. The present study suggests that a fu-

ture PGA (and thus the peak amplitude of short-period ground motions) is readily predictable from

past records with a known, finite uncertainty. In contrast, a future PGD (or peak amplitude of long-

period ground motions) cannot be anticipated with certainty because first, each large earthquake

changes the observed marginal distribution of PGD, and second, the uncertainty of this distribution

at present is quite large.

8 Conclusions

For ground motions recorded within 10 km of a fault producing an earthquake with magnitude

greater than 6.0, the observed distribution of peak ground acceleration is lognormal, but the ob-

served distribution of peak ground displacement is approximately uniform on a logarithmic scale,

or at least fat-tailed. We expect the distribution of PGA to remain approximately lognormal with

the addition of data from future earthquakes. However, the distribution of PGD will likely change

after a well-recorded large earthquake, and specifically we expect the range of recorded PGD to

expand at the largest values. The observed records show that there is essentially no correlation

between PGD and PGA for near-source ground motions from large events.

Seismic scaling relations motivate the expected distribution of PGD as uniform on the log-

arithmic scale, or at least fat-tailed. This result implies that every peak ground displacement is

approximately equally likely at a given site—to a physical limit—even though an earthquake large

enough to produce large displacements is infrequent. There are no such scaling relations to predict

the lognormal distribution of PGA because PGA does not scale with fault rupture area or slip on

the fault. The large uncertainty in a future value of observed PGD exists despite the ability of earth

scientists to accurately model long-period ground motions. In contrast, the certainty in a future

value of PGA exists despite the inability to model short-period ground motions reliably.

The design of short-period structures with modern building codes is reliable in part because

earthquakes with magnitude greater than 6 produce a stable marginal distribution of PGA with

respect to future earthquakes. The mean and standard deviation of PGA in the next large earth-

quake can be predicted reliably from the historic distribution of PGA. The design of long-period

structures, however, should not rely on the same argument: the observed marginal distribution of

PGD may change after the next well-recorded large earthquake. The emphasis on recorded ground

motions for structural design using seismic response histories assumes that future ground motions

will be sufficiently similar to recorded ground motions. This study demonstrates that this assump-

tion is not valid. Thus, there must be a different approach to the design of long-period structures

that does not rely heavily on past observations of PGD to predict future amplitudes of long-period
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ground motions. This approach should acknowledge that, for any site in the near-source region of

a major fault, every PGD is similarly likely in the logarithmic sense. That is, 1 m of future peak

ground displacement is approximately as likely as 10 m of future peak ground displacement. The

optimal design of long-period structures should be the most economical design that is robust in

large ground motions.

9 Data and Resources

All data used in this study are publicly available. Please see the Data section for more detail.
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Earthquake Mw N Focal Depth [km] Fault Model
1979 Imperial Valley 6.5 14 12.0 Hartzell and Heaton (1983)
1989 Loma Prieta 6.9 8 19.0 Wald et al. (1991)
1992 Landers 7.3 1 15.0 Wald and Heaton (1994)
1994 Northridge 6.6 17 16.8 Wald et al. (1996)
1995 Hyogoken-Nanbu 6.9 4 20.3 Wald (1996)
1999 Izmit 7.6 4 17.0 Sekiguchi and Iwata (2002)
1999 Chi-Chi 7.6 42 21.2 Ji et al. (2003)
2002 Denali 7.8 1 15.0 Tsuboi et al. (2003)
2004 Parkfield 6.0 47 12.0 Ji et al. (2004)
2004 Niigataken-Chuetsu 6.6 9 13.0 Honda et al. (2005)

Table 1: Earthquake dataset used for the near-source ground motion analysis. Moment magnitude
(Mw) and focal depth are cited from the Harvard Centroid Moment Tensor solution. The prelimi-
nary determination of epicenter is used for the focal depth. The number of near-source records for
each earthquake (N) is also tabulated. The fault models are used to define near-source stations.
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Figure 7: Approximate number of seismic stations in the United States and Japan and the largest
recorded PGA. As the number of seismic stations recording ground motions increases, the largest
recorded PGA increases as well. With more instrumentation deployed, it is more likely to record
larger PGAs. (Adapted and extended from Çelebi et al. (1999))
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Figure 8: Probability that the PGA exceeds 20 and 40 m/s2 as a function of time. The parameters
used for this simulation are:ρ=0.004 station/km2, A=6.0, b=1.0 m=1.54,σ=0.57,M0=6.0, and
MU=8.5. The station density is assumed to increase 5% every year.
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