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ABSTRACT: To estimate the fault dimension of an earthquake in real time, we present a methodology to classify
seismic records into near-source or far-source records. This study analyzes peak ground motions and finds the
function which best classifies near-source and far-source records based on these parameters. We perform: (1)
Bayesian methods to find the coefficients of the linear discriminant function; and (2) Bayesian model class
selection to find the best combination of the peak ground motion parameters. Bayesian model class selection
shows that the combination of vertical acceleration and horizontal velocity produces the best performance for the
classification. The linear discriminant function producedclassifies near-source and far-source data and it gives
the probability for a station to be near-source, based on theground motion measurements. This discriminant
function is useful to estimate the fault rupture dimension in real time, especially for large earthquakes.

1 INTRODUCTION
Recent studies show that earthquake early warn-
ing systems, such as the Virtual Seismologist (VS)
Method (Cua, 2005), can accurately estimate the lo-
cation of the epicenter a few seconds after the first
arrival station records the ground motion of the main
shock (Nakamura, 1988; Allen & Kanamori, 2003).
The VS method assumes a point source model for the
rupture, and it works well for small to moderate earth-
quakes (magnitude< 6.5) (Cua, 2005). However, for
large earthquakes, the fault rupture length can be on
the order of tens to hundreds of kilometers, and the
ground motion at a site may be affected by the fault
rupture direction or the fault rupture length.

The objective of this paper is to develop a method-
ology to classify stations into near-source and far-
source since this can be used for identifying the fault
geometry if there is a sufficiently dense seismic net-
work. This classification problem can be stated as fol-
lows: given ground motion data from past earthquake
records, what is the probability that a station is near-
source when a new observation is obtained?

To approach this problem, we:
1) Collect strong motion data from earthquake

strong motion archives and classify these samples into
two predefined groups: records from near-source sta-
tions and far-source stations. This particular set of
data is called the training set.

2) Discover a discriminant function of the samples

features (e.g. peak ground acceleration (PGA), veloc-
ity (PGV), displacement (PGD)) which provides the
best performance in terms of near-source / far-source
classification.

3) Allocate new observations when they are ob-
tained to one of the two groups based on the discrim-
inant function.

The first step is quite straightforward; strong mo-
tion data from past earthquakes are collected based
on certain selection criteria. The second step is the
main topic of this paper; and we investigate linear dis-
criminant functions by using the Bayesian method.
The third step can then be accomplished in a real-
time analysis. Given a new ground motion observa-
tion from on-going rupture, the discriminant function
gives the probability that the observation is located in
the near-source.

2 STRONG MOTION DATA
2.1 Data sources
We used strong motion datasets from nine earth-
quakes with magnitude greater than 6.0 and con-
taining records of near-source stations. The selected
earthquake dataset is shown in Table 1. Here, we de-
fine a near-source station as a station whose fault dis-
tance (the shortest distance between the station and
the surface projection of the fault plane) is less than
10km. 695 three-component strong motion data are
used for the classification analysis and 14% (100 sta-



Table 1: The earthquake dataset used for the classification analysis. Moment magnitude (Mw) is cited from Harvard CMT
solution. The numbers of near-source (NS) and far-source (FS) data for each earthquake are also shown. The fault models
are used as selection criteria to classify near-source and far-source stations.

Earthquake Mw NS FS Total Fault Model Reference
Imperial Valley (1979) 6.5 14 20 34 Hartzell & Heaton (1983) BSSA, 1553-1583
Loma Prieta (1989) 6.9 8 39 47 Wald et al. (1991) BSSA 1540-1572.
Landers (1992) 7.3 1 112 113 Wald & Heaton (1994) BSSA, 668-691.
Northridge (1994) 6.6 17 138 155 Wald et al. (1996) BSSA, S49-70.
Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald (1996) JPE 489-503.
Izmit (1999) 7.6 4 13 17 Sekiguchi & Iwata (2002) BSSA, 300-311.
Chi-Chi (1999) 7.6 42 172 214 Ji et al. (2003) JGR, 2412.
Denali (2002) 7.8 1 29 30 Tsuboi et al. (2003) PEPI 305-312.
Niigataken-Chuetsu (2004)6.6 9 58 67 Honda et al. (2004) EPS (submitted).
Total 100 595 695

tions) are near-source stations.
The classification as near-source or far-source in

the training set is based on fault models used for
waveform inversions. These fault models are typ-
ically determined from the aftershock distribution
(Sekiguchiet al., 1996), and the shape of the fault area
is a rectangular box. Fault models used for classifying
stations are also shown in Table 1. Figure 1 shows the
surface projection of the fault rupture surface based
on the fault models. Stations within 10 km of this fault
projection (the white area in the figures) are classified
as near-source, indicated by solid circles. Far-source
stations are shown in open circles.

Table 2: Eight measurements of peak ground motions are
calculated from three component accelerograms. Codes
and units of the components used in this paper are shown.

Code Measurement Unit
Hj Horizontal Jerk (
m=s3)
Zj Vertical Jerk (
m=s3)
Ha Horizontal Acceleration (
m=s2)
Za Vertical Acceleration (
m=s2)
Hv Horizontal Velocity (
m=s)
Zv Vertical Velocity (
m=s)
Hd Horizontal Displacement (
m)
Zd Vertical Displacement (
m)

2.2 Data processing
We processed the accelerograms obtained from the
nine earthquakes according to the following method.
The DC offset of the accelerograms is corrected by
subtracting the mean of the pre-event portion.

The peak amplitude of the horizontal components
is calculated by the square root of the sum of the
squares of the peaks of NS and EW components. The
peak amplitude of UD (up-down) component is used
directly for the peak vertical component.

The following processes are completed for all the
data.

Jerk: The three-component accelerograms are dif-
ferentiated in the time domain, using a simple finite-
difference approximation. The peak value of each
component is selected.

Acceleration: Original accelerograms are used to
select the peak value.

Velocity: Some velocity records have a linear trend
due to either tilting, the response of the transducer to
strong shaking, or problems in the analog-to-digital
converter. The baseline correction scheme applied to
obtain appropriate velocity records is as follows (Iwan
et al., 1985; Boore, 2001):

1) Determine the straight line to be subtracted from
the velocity trace. The line is given by the equationvf (t) = a1t+ a2 where coefficientsa1 anda2 are de-
termined by least-squares fitting to the velocity trace
after the strong shaking;

2) Remove this linear trend from the velocity
record.

Displacement: The corrected velocity records are
integrated once in the time domain and high-pass fil-
tered using a fourth-order Butterworth filter with a
corner frequency of 0.075 Hz.

The peak features used for the classification anal-
ysis are shown in Table 2. Several combinations of
these 8 features are tried to find the best performance
of the classification.

3 BAYESIAN METHOD
3.1 Near-source versus far-source discriminant

function
We assume the discriminant function to classify
records into near-source and far-source is expressed
as a linear combination of the log of ground motion
amplitudes:f(Xij�) = 
1xi1 + 
2xi2 + ::: + 
mxim � d (1)
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(c) Observations for the Chi-Chi (1999)
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(d) Predictions for the Chi-Chi (1999)

Figure 1: Observations and predictions of near-source and far-source stations. The fault projections are shown in the solid
lines. The white area around the fault lines indicates the area with distance less than 10 km from the fault projections. The
star symbol denotes the epicenter of the earthquake. Left: observations of near-source and far-source stations based on the
fault models. Near-source and far-source stations are shown in solid and open circles, respectively. Right: probabilities
of near-source based on the optimal discriminant function obtained by the Bayesian approach. Darker marks have higher
probability that the station is located at near-source.

wherexik = kth feature parameter at the stationiXi =[xi1 xi2 ::: xim℄
1; :::; 
m =the regression coefficientsd = decision boundary constant� =[
1 
2 ::: 
m d℄T
We may usem components out of the eight ground

motion components shown in Table 2.

We apply the logistic sigmoid function�(x) =1=(1 + e�x) to the linear functionf(Xij�) to define
the predictive probability that a station is near-source
(Li et al., 2002). The logistic sigmoid function is a
smooth, positive, and monotonically increasing func-
tion, as shown in Figure 2. The predictive probabil-
ities that a station is near-source or far-source are
therefore defined here by:P (YijXi; �) =�(Yif(Xij�)) = 11+ e�Yif(Xij�) (2)
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Figure 2: Logistic sigmoid function�(x) = 1=(1 + e�x) is
used to express the predictive probability for classification.
The function approaches zero asx! -1, and one asx!1. The function is 0.5 whenx is zero.

whereYi =�1 if near-source�1 if far-source
at the stationi

3.2 Asymptotic approximation

The coefficients
1; :::; 
m; andd in the discriminant
function are determined from the training data set by
Bayesian approach with an asymptotic approxima-
tion. The probability density function (pdf) of param-
eter� conditioned on dataDn and model classM can
be expressed using Bayes’ theorem:p(�jDn;M)posterior /p(Dnj�;M)likelihood �p(�jM)prior/ nYi=1 P (YijXi; �)� p(�jM) (3)

whereDn =f(Xi; Yi) : i = 1; :::; ng : available set of dataXi =[xi1 xi2 ::: xim℄ : ground motion at the stationiYi =�1 if near-source�1 if far-source
at the stationi

We select a Gaussian prior with zero mean and
standard deviation�=100 to cover a wide range of the
parameter space. The likelihood function is expressed
by substituting equation (2) into (3):p(Dnj�;M) = nYi=1 11 + e�Yif(Xij�) (4)

From equations (3) and (4), the posterior pdf is:p(�jDn;M) / 1(p2��)m+1 exp(� 12�2 �T �)prior� nYi=1 11 + e�Yif(Xij�)likelihood (5)

An asymptotic approximation is performed to charac-
terize the posterior pdf defined by equation (5). In the
asymptotic approach, the posterior is represented by
a Gaussian distribution for� with mean�̂, the most
probable value of�, and a covariance matrix̂�.

We first evaluate the optimal valuê� of � that max-
imizes the posterior pdf. This multidimensional opti-
mization problem is solved by a numerical optimiza-
tion algorithm provided by Matlab.

Using Laplace’s method of asymptotic approxima-
tion, Beck and Katafygiotis (1998) show that the pos-
terior pdf for a set of model parameters� may be ap-
proximated accurately by a Gaussian distribution with
mean�̂ and covariance matrix̂�, given a large amount
of data. DefineH(�) by:H(�) = �rr log[p(Dnj�;M)p(�jM)℄ (6)

then�̂ = H(�̂)�1.
3.3 Optimal solution and sensitivity analysis
The optimal parameter values and their standard de-
viations for the selection of features Za and Hv are
shown in Table 3. This combination of parameters are
selected by Bayesian model class selection (the re-
sults are shown later). Note that for large standard de-
viations in the prior pdf, the effect of the prior on the
posterior is negligible (Sivia, 1996).

Table 3: The optimal model parameters and standard devi-
ations for parameters estimated by Bayesian method.

Coefficient Optimal value Std. deviation
1 (Za) 6.046 0.903
2 (Hv) 7.886 1.206d 27.090 3.163

Figure 3 compares the Gaussian distribution with
mean�̂ and covariance matrix̂�, and the distribution
of samples for 3 parameters generated by Metoropo-
lis algorithm (Yamadaet al., 2006). The Gaussian ap-
proximation agrees well with the posterior pdf char-
acterized by the stochastic simulation.

In order to examine the sensitivity of the Bayesian
approach to the training dataset, we perform a cross-
validation analysis. First, the training dataset is ran-
domly divided into two datasets and the discrimi-
nant function is constructed from one dataset (training
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Figure 3: The Gaussian distributions for 3 parameters ob-
tained from the asymptotic approximation. Distribution of
samples generated by Metropolis algorithm (Yamadaet al.,
2006) are added in the figure, and fit the Gaussian distribu-
tion well.

Table 4: The confusion matrix for the cross-validation anal-
ysis. “All dataset” is the analysis which uses the whole
dataset as a training set and a validation set. “Half of
dataset” is the analysis which uses half of dataset as a train-
ing set and the other half as a validation set. “Other half of
dataset” is the analysis which switches the training and val-
idation set. NS and FS stand for near-source and far-source,
respectively.

Dataset NS/FS Near-source Far-source

All dataset
NS 78 (78%) 22 (22%)
FS 12 (2%) 583 (98%)

Half of dataset
NS 39 (74%) 14 (26%)
FS 4 (1%) 291 (99%)

Other half of NS 37 (79%) 10 (21%)
dataset FS 8 (3%) 292 (97%)

set). This discriminant function is applied to the other
dataset (validation set) to check its classification per-
formance. We then switch the testing set and valida-
tion set, and repeat this cross-validation analysis.We
set the near-source / far-source boundary correspond-
ing to the probability that the station is near-source to
be half, that is, the station is classified as near-source
if the probability that it is near-source is more than
1/2. The confusion matrices of these two analysis and
the previous analysis which uses all of the dataset are
shown in Table 4. The classification error with half of
the dataset is as small as that of the analysis which
uses all of the dataset. Therefore, we confirm that the
sensitivity to the training dataset is very small, giving
more confidence that the discriminant function from
Bayesian analysis will perform well for future earth-
quake data.

4 BAYESIAN MODEL CLASS SELECTION
4.1 Method
Bayesian model class selection determines which
combination of the eight ground motion parameters
gives the best classification for the near-source and
far-source. The essential idea is to find the most prob-
able model class based on dataDn within a setM of
candidate model classesMj, j = 1; :::; J (Beck and
Yuen, 2004). Applying Bayes’ theorem, the probabil-
ity of model classMj can be expressed as follows:P (MjjDn;M) = eviden
e priorp(DnjMj)P (MjjM)p(DnjM)normalizing 
onstant (7)

We assume a uniform prior for the model class,
i.e. each model class is equally plausible a priori. An
asymptotic approximation for large sample sizesn
can be used to compute the evidence for the model
class (Papadimitriouet al., 1997):p(DnjMj) �2�Nj=2p(�̂jjMj)qjHj(�̂j)jO
kham fa
tor � p(Dnj�̂j;Mj)likelihood (8)

= 1�Nj exp(� jj�̂j jj22�2 )qjHj(�̂j)j � p(Dnj�̂j;Mj)
Here,Hj(�j) is given by equation (6) for the choice
of parameters�j corresponding to model classMj.p(�̂jjMj) is the Gaussian prior with mean 0 and stan-
dard deviation 100 andp(Dnj�̂j;Mj) is the likelihood
function defined in equation (4), evaluated at the op-
timal parameter vector for model classMj. For the
model class selection, the effect of the Gaussian prior
is significant if the standard deviation,�, is large.
However, the most probable model class based on the
data is robust to� over a wide range of values (Ya-
madaet al., 2006).

4.2 Results of model class selection
We used Bayesian model class selection to find the
best combination of the eight ground motion param-
eters with the same dataset as the previous classifica-
tion problem. First, we impose the condition that both
horizontal and vertical components be included in the
model for any selected ground motion quantity. Under
this condition, there are four groups of ground motion
parameters (peak jerk, acceleration, velocity, and fil-
tered displacement) giving fifteen possible combina-
tions. We found out that the combination of accelera-
tion and velocity is the preferred model with highest
probability (see Table 5).



Table 5: Results for Bayesian model class selection when fifteen combinations of the ground motion parameters are
examined under the condition that the horizontal and vertical components are used together. The most probable value of
the decision boundary parameter corresponding to each ground-motion parameter is given first for each model class. The
values for the Ockham factor (Ock.), likelihood (likeli.),and evidence (evi.) of each model class are log-scaled. The last
column is the posterior probability that measures how plausible the model class is. It is scaled such that the total probability
of the fifteen model classes is 100 %.

Model Hj Zj Ha Za Hv Zv Hd Zd d Ock. Likeli. Evi. Pr.(%)
j 1.53 4.30 - - - - - - -23.84 -17 -140 -156 0.0
a - - 4.38 4.37 - - - - -21.43 -16 -117 -133 0.0
v - - - - 8.57 0.87 - - -16.33 -16 -118 -134 0.0
d - - - - - - 2.49 1.44 -5.76 -17 -192 -209 0.0
ja -2.74 2.04 6.60 2.95 - - - - -20.82-25 -114 -139 0.0
jv 2.57 2.79 - - 7.00 2.00 - - -36.09-25 -80 -105 32.4
jd 3.44 3.43 - - - - 3.48 0.79 -33.17-26 -94 -120 0.0
av - - 2.54 4.38 7.01 0.91 - - -29.47-24 -80 -104 62.1
ad - - 4.93 5.02 - - 3.89 0.22 -29.40-25 -82 -106 5.3
vd - - - - 12.55 2.30 -3.38 -0.25 -19.99-25 -106 -131 0.0
jav 1.36 1.47 1.36 2.28 6.93 1.50 - - -33.75-33 -78 -111 0.1
jad 0.55 0.43 4.35 4.49 - - 3.89 0.27 -30.72-33 -81 -115 0.0
jvd 2.72 2.68 - - 6.66 2.91 0.66 -1.12 -36.66-34 -80 -113 0.0
avd - - 3.47 4.50 4.58 1.06 1.80 -0.47 -30.16-33 -79 -112 0.0
javd 1.40 1.29 2.05 2.49 5.05 2.11 1.69 -1.02 -34.31-41 -78 -119 0.0

Table 6: The best five model classes in the Bayesian model class selection when 255 combinations of the ground motion
parameters are examined. The columns are in the same format as in Table 5.

Model Hj Zj Ha Za Hv Zv Hd Zd d Ock. Likeli. Evi. Pr.(%)
1 - - - 6.05 7.89 - - - -27.09 -15 -81 -96 80.8
2 1.91 - - 4.41 8.31 - - - -31.92 -20 -79 -99 6.6
3 - - 1.86 4.88 7.86 - - - -29.17 -20 -80 -100 2.9
4 - 1.59 - 4.31 8.02 - - - -29.71 -20 -80 -100 2.5
5 - 4.43 - - 8.52 - - - -32.22 -16 -84 -100 1.9

The factorp(�̂jjMj)(2�Nj=2)=qjHj(�̂j)j in equa-
tion (8) is called the Ockham factor by Gull (Gull,
1988; Beck and Yuen, 2004). It penalizes a more com-
plicated model and so makes a simpler model prefer-
able. The Ockham factor is also shown in Table 5.

The log of the likelihood functionp(Dnj�̂j;Mj) be-
comes larger as the number of the parameters in the
model class increases because a more complicated
model class will fit the data better than a less compli-
cated one. However, the Bayesian model class selec-
tion automatically accounts for the trade-off between
the complexity of the model (here it can be interpreted
as the number of parameters) and the fit of the data to
find a well-balanced model (Beck and Yuen, 2004).

To examine the possible model classes further, the
constraint that horizontal and vertical components
be used together is removed. We test all 255 model
classes created from the combinations of 8 parame-
ters. The results for the best five model classes are
shown in Table 6. The sum of the posterior probabil-
ity of the five model classes is 95% out of all 255

model classes.
Model class 1, which has the coefficients of the

vertical acceleration and horizontal velocity, is the
most probable model within the set of 255 model
classes. The discriminant function for the most prob-
able model in model class 1 is:f(Xij�) =6:046 log10Za+ 7:885 log10Hv� 27:091

(9)

whereP (Yi = 1jXi; �) = 11+ e�f(Xij�) (10)

is the probability that stationi is near-source. Note
that the probability that the station is near-source is
higher, iff is larger.

This result indicates that the amplitude of high-
frequency components is effective in classifying near-
source and far-source stations. It is obvious that more
complicated model classes have a better goodness-to-
fit, as the same reason as a higher-degree polynomial



120˚ 121˚ 122˚

23˚

24˚

25˚

0 50

km

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) 10 seconds after the origin time

120˚ 121˚ 122˚

23˚

24˚

25˚

0 50

km

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) 20 seconds after the origin time
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(c) 30 seconds after the origin time

Figure 4: Snapshots of the probabilities of near-source forthe Chi-Chi earthquake, based on the optimal discriminant
function from the Bayesian approach. The large circle is thetheoretical rupture front assuming the rupture velocity 2km/s.

function fits better to a dataset. However, the Ock-
ham factor penalizes a more complicated model class.
Model class selection solves the trade-off between
the simplicity and reliability of the model class, and
model class 1 is selected with the highest evidence.

We found that the horizontal and vertical com-
ponents of same frequency range (e.g., horizontal
and vertical accelerations) have significant interaction
(Yamadaet al., 2006). Parameters with the same com-
ponent and similar frequency range (e.g., horizontal
acceleration and horizontal velocity) are also strongly
correlated (Yamadaet al., 2006). These correlated pa-
rameters do not have significant effect on the perfor-
mance of the classification. Therefore, models with
these correlated parameters are rejected by the Ock-
ham factor and the simpler model class is selected.

5 RESULTS AND DISCUSSION
We apply the optimal discriminant function from the
Bayesian approach (in equations (9) and (10)) to all
the stations in the dataset. Figure 1 (right) shows the
classification results for the Imperial Valley and Chi-
Chi earthquake dataset. The distribution of stations
with a high probability of being in the near-source is
consistent with the fault geometry.

To examine the application for real-time analysis,
the optimal discriminant function in equations (9) and
(10) is applied to the Chi-Chi earthquake strong mo-
tion records. We generated snapshots of the probabil-
ity that a station is near-source from 10 seconds to 40
seconds after the beginning of rupture. Peak ground
motions used for this classification analysis are com-
puted from observed data every 10 seconds for each
station and evaluated in the discriminant function.
The results are shown in Figure 4. A darker mark at
a station in Figure 4 indicates that the station is more
likely to be near-source, and a lighter mark indicates

that the station is more likely to be far-source.
Ten seconds after the rupture initiation, the map

shows that stations with high probability of being in
the near-source are located near the epicenter, and
it indicates that the rupture area is propagating con-
centrically. At 20 seconds, the probability of being
in the near-source at thirteen stations is computed to
be greater than 50 %, but the concentric station dis-
tribution makes it difficult to identify any directivity
of rupture propagation. The average slip velocity is
2 km/s (Jiet al., 2003), and the rupture front propa-
gates 40 km from the hypocenter at this point. We can
see the North-South character of the rupture direction
clearly after 30 seconds of rupture. At 30 seconds, the
distribution of stations with high near-source proba-
bility agrees with the fault surface projection, and sta-
tions at the near-source and far-source boundary have
around 50 % probability. Even though the fault ge-
ometries used for the wave inversion are not neces-
sarily the actual extent of the fault, to a first-order
approximation, the classification results are in good
agreement with them.

6 CONCLUSION
We presented a methodology to classify seismic
records into near-source or far-source records in or-
der to estimate fault dimension in an earthquake
early warning system. Ground motion records for
past earthquakes are analyzed to find a function that
best discriminates near-source and far-source records.
Peak values of jerk, acceleration, velocity, and dis-
placement are used to find the linear combination of
peak values which provides the best performance to
classify near-source and far-source records. We also
analyzed which combination of ground motion fea-
tures had the best performance for classification using
Bayesian model class selection, and the best discrim-



inant function among the model classes examined is:f(Xij�) =6:046 log10Za+ 7:885 log10Hv� 27:091
(11)P (Yi = 1jXi; �) = 11+ e�f(Xij�) (12)

where Za and Hv denote the peak values of the verti-
cal acceleration and horizontal velocity, respectively,
andP (Yi = 1jXi; �) is the probability that a station
is near-source. This function indicates that the am-
plitude of high-frequency components is effective in
classifying near-source and far-source stations.

The probability that a station is near-source ob-
tained using this optimal discriminant function for all
the earthquakes shows the extent of the near-source
area quite well, suggesting that the approach provides
a good indicator of near-source and far-source sta-
tions for real-time analyses. Note that this function
is constructed by the training dataset with magnitude
greater than 6.0, so it only works for large earth-
quakes.
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