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SUMMARY

Current earthquake early warning (EEW) systems lack the ability to appropriately

handle multiple concurrent earthquakes, which led to many false alarms during the

2011 Tohoku earthquake sequence in Japan. This paper uses a Bayesian proba-

bilistic approach to handle multiple concurrent events for EEW. We implement the

theory using a 2-step algorithm. First, an efficient approximate Bayesian model class

selection scheme is used to estimate the number of concurrent events. Then, the Rao-

Blackwellized Importance Sampling method with a sequential proposal probability

density function is used to estimate the earthquake parameters, i.e., hypocenter

location, origin time, magnitude and local seismic intensity. A real data example

based on two months data (March 9 to April 30, 2011) around the time of the 2011

M9 Tohoku earthquake is studied to verify the proposed algorithm. Our algorithm

results in over 90% reduction in the number of incorrect warnings compared to the

existing EEW system operating in Japan.

Key words: Earthquake Early Warning; Bayesian model class selection; Rao-

Blackwellized Importance Sampling; Sequential sampling; 2011 Tohoku earthquake.
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1 INTRODUCTION

During the 2011 M9 Tohoku earthquake in Japan, an earthquake early warning (EEW) system

operated by the Japan Meteorological Agency (JMA) provided the first early warning 5.4s

after the first P-wave detection, which was before the S-wave arrival throughout all areas in

Japan (Hoshiba et al. 2011). However, during the two months after the mainshock on March 11,

because of the significantly increased seismicity around the region, 44 inappropriate warnings

(missed and false alarms) were issued among the 70 early warnings broadcast to the public

(JMA, 2013a,b). Over 70% of the inappropriate warnings were caused by multiple concurrent

events (referred as the multi-events problem in this paper). Motivated by these warning errors,

our study focuses on the improvement of EEW using a Bayesian probabilistic approach and

proposes an algorithm to properly handle the multi-events problem. The proposed algorithm

first finds the most probable number of earthquake given a set of seismic data based on

the theory of Bayesian model class selection, and then estimates the earthquake parameters

(e.g., hypocenter location, magnitude and origin time) of each event based on the method of

Bayesian inference. The JMA EEW system is used as an example to demonstrate the details

of the algorithm.

The JMA EEW system began operating in 2007; it is the first country-wide EEW system,

broadcasting warnings to the public when the expected intensity measure (in the JMA seismic

intensity scale) is greater than or equal to “5 lower” (denoted as 5−). The current system

uses a continuous datastream from around 300 JMA seismic stations and 700 Hi-net stations

located all around Japan (Hoshiba et al. 2008). The datasets from the JMA network and

the Hi-net network are processed in separate algorithms to provide individual estimates on

hypocenter location and origin time. Then these results are combined to provide the final

warning. The magnitude is estimated from the JMA network based on the JMA magnitude

estimation equation (Kamigaichi, 2004; JMA, 2010, 2012), which is given in Section 3.3.2.

Finally, the seismic intensity at each site is estimated based on the estimated magnitude and

hypocenter location using an attenuation relationship (Si & Midorikawa 2000).

During the period of active seismicity after the Tohoku earthquake, the JMA EEW sys-

tem sometimes treated the data from multiple events as a single earthquake. As a result,

some of the near source stations of the second event were treated as far source stations of the

first event (Figure 1). This led to a significant overestimate of magnitude and caused false

alarms. Recently, Yamada et al. (2012) and Liu & Yamada (2014) proposed a multi-events

recognition algorithm using maximum displacement amplitude of triggered and non-triggered

stations based on a particle filter approach. However, displacement amplitude is not sensi-
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Figure 1. Mechanisms of false alarms: (a) two small earthquakes occurred concurrently being distant

from each other; (b) EEW treated near source stations of one small event as far source stations from

a large event. Triangle: seismic station (triggered stations in red).

tive enough for providing accurate hypocenter location estimate. One way to improve this

problem is to include the P-wave picking time information, which is conventionally used in

the hypocenter location. This paper integrates P-wave picking time and maximum displace-

ment amplitude from both JMA and Hi-net seismic stations into a single algorithm under a

Bayesian probability framework. We expect our approach to provide faster and more accurate

warnings for EEW systems.

The outline of this paper is as follow: Section 2 states the details of the data used in the

case study; Section 3 explains the theoretical foundation of the proposed algorithm; Section 4

illustrates the implementation details of the algorithm in practice; Section 5 shows the results

of the case study followed by some discussions; Section 6 concludes the paper with suggested

directions for future study.

2 DATA DESCRIPTION

We use the Japanese seismic data from March 9 to April 30, 2011 in this paper. This period

includes the Tohoku foreshock that happened on March 9, the mainshock on March 11 and

the major part of the aftershock sequence. Continuous waveform data from around 300 JMA

stations and 700 Hi-net stations are used in this study. The JMA seismic network uses ac-

celerometers, whereas the Hi-net uses short-period velocity meters. The velocity meters have

a lower sensitivity for long-period waves and suffer from large amplitude saturation (Shiomi

et al. 2005). Therefore, we remove instrumental response of the Hi-net data and adjust them

to the JMA data (Yamada et al. 2014). Two features of the waveform data are used in this

study: the maximum displacement amplitude and the P-wave picking time. The displacement
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amplitude is computed using a 6s high-pass filter (Katsumata 2008). Then, the maximum dis-

placement amplitude is obtained by continuously tracking the maximum value as a function

of time after a station is triggered. The P-wave picking time is computed using an algorithm

suggested in Yamada et al. (2014), which is based on a filter proposed in Allen (1978).

The performance for earthquake parameter estimation of the proposed algorithm is evalu-

ated using the JMA unified catalogue obtained from the National Research Institute for Earth

Science and Disaster Prevention (NIED) webpage (NIED, 2014). The results of the current

JMA EEW system is obtained from the JMA webpage (JMA EEW, 2014). A total of 71

events are selected to evaluate the performance of EEW systems (see Appendix A).

The JMA magnitude used in this paper are based on the maximum displacement for large

earthquakes, and maximum velocity for smaller earthquakes. The magnitude of the Tohoku

mainshock is moment magnitude.

3 BAYESIAN THEORY FOR MULTI-EVENTS EEW ALGORITHM

In the case of multi-events, it is important for an EEW system to identify the number of

concurrent events given the current data set, as well as their information, in order to broadcast

accurate warnings to the users. This section describes the theory and method for identifying

the number of concurrent earthquakes and estimating the source parameters. For the ease of

derivation, this paper adopts the following notation:

• D1:t = {Dj(1 : t)|j = 1, ..., Nst}—set of waveform data Dj(1 : t) for Nst stations from

initial time step 1 to time step t

• Ft = {Fj(t)|j = 1, ..., Nst}—set of vectors of data features Fj(t) (e.g., maximum dis-

placement amplitude and P-wave picking time in this study), which are extracted from the

waveform data D1:t, for each of the Nst stations, and used for parameter estimation

• Mn—Bayesian model class (Beck 2010) that assumes n concurrent events are captured

within the current data set D1:t

• Θn = {θl|l = 1, ..., n}—set of vectors of earthquake parameters θl for each of the n events

given by Mn (assume Θn is independent of time t, i.e., it is a static variable)

• φ(x) = 1√
2π

exp
(
−x2

2

)
- the standard Gaussian PDF (probability density function)

• Φ(x) = 1√
2π

x∫
−∞

exp
(
−y2

2

)
dy - the standard Gaussian CDF (cumulative density function)

• p(x|y) - conditional PDF of x given y (x is a continuous variable)

• P (x|y) - probability of x given y (x is a discrete variable)
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3.1 Bayesian probability approach for EEW

In general, an EEW system receives and processes seismic network data continuously to

provide updated warning and earthquake information. In our approach, the first step is to

introduce the Bayesian model class selection framework to find the most probable number

of earthquakes. The next step is a numerical method for Bayesian inference, called Rao-

Blackwellized Importance Sampling (RBIS) (Liu 2002), to estimate the earthquake parameters

for each identified event. In this section, this two-step process is expressed in a mathematical

form based on applying fundamental probability theory at every discrete time t.

The first step is to find the most probable number of events, n̂, that explains the current

data set at time t, i.e., find the model class Mn̂ that maximizes the posterior probability

over all model classes. This optimization problem is often referred to as Bayesian model class

selection in the literature (Beck 2010). Rather than using all data D1:t at time t in the posterior

probability for Mn, we use only the set of feature vectors Ft extracted from D1:t. By Bayes’

theorem:

P (Mn|Ft) =
p(Ft|Mn)P (Mn)

p(Ft)
∝ p(Ft|Mn)P (Mn) (1)

Assuming a non-informative prior P (Mn) = constant ∀n to avoid imposing any bias on any

model class before the data is collected, the probability of model Mn can be expressed as:

P (Mn|Ft) ∝ p(Ft|Mn)

⇒ n̂ = argmaxn{P (Mn|Ft)} = argmaxn{p(Ft|Mn)}
(2)

where by the Total Probability Theorem, the evidence for Mn given by data Ft is:

p(Ft|Mn) =

∫
p(Ft|Θn,Mn)p(Θn|Mn) dΘn (3)

The models for p(Ft|Θn,Mn) and p(Θn|Mn) are introduced later.

The second step is to find the earthquake parameter values Θn̂ for all events given Mn̂,

i.e., find the posterior PDF p(Θn̂|Mn̂,Ft). This is a Bayesian inference problem under the

specified model class Mn̂. By Bayes’ theorem:

p(Θn̂|Mn̂,Ft) =
p(Ft|Θn̂,Mn̂)p(Θn̂|Mn̂)

p(Ft|Mn̂)

∝ p(Ft|Θn̂,Mn̂)p(Θn̂|Mn̂)

(4)

Here, the evidence function p(Ft|Mn̂) in Equation 4 is the same one as in Equation 3 that is

used for finding n̂.
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3.2 Efficient approximate scheme for Bayesian model class selection

There is limited time to perform the full Bayesian model class selection scheme through

calculating the evidence for all possible model classes Mn. Existing methods to calculate or

estimate the evidence function p(Ft|Mn) are not fast enough for this purpose. This motivates

the need for an efficient approximate, but suboptimal, model class selection scheme that is

also robust.

We assume that n̂ is a monotonically increasing function of time t because earthquakes

happen in sequence. Exploiting this pattern, instead of searching for an optimal n̂ at every

second, one may start with n̂ = 0 and increase n̂ by one when a fast calculated criterion is

satisfied. Intuitively, n̂ should be increased by one when the current data set D1:t cannot be

well explained by any of the identified events given the currently selected model class Mn̂.

In other words, let Mn̂ = {Ml|l = 1, ..., n̂} where Ml represents each event identified within

Mn̂, one may increase n̂ by one when the following criterion is met:

p(Ft|Ml) < τnew ∀l = 1, ..., n̂ (5)

Here, τnew is some empirical threshold (possibly depending on n̂) for how well the current

data set features Ft are explained by an event Ml, and p(Ft|Ml) is calculated by an integral

similar to Equation 3 except that the integration is over θl, the earthquake parameters for

Ml.

Equation 5 involves calculations with the complete feature set Ft. One can further simplify

the criterion by calculating with only one set of features Fj(t) that is extracted from a single

station j. Because most earthquakes have only one first triggered station, each event can be

represented by its first triggered station. One can continuously search for newly triggered

stations that have a low probability to be caused by any of the existing events in Mn̂. Those

stations are likely to be the first triggered stations of new events. As a result, a more efficient

criterion is:

p(Fj(t)|Ml) < τnew for newly triggered station j & ∀l = 1, ..., n̂ (6)

where p(Fj(t)|Ml) =
∫
p(Fj(t)|θl,Ml)p(θl|Ml) dθl

3.3 Bayesian inference for earthquake parameters using RBIS

With the efficient approximate scheme, θl is only dependent on Ml within Mn̂. Hence, the

posterior of each θl ∈ Θn, p(θl|Mn̂,Ft) = p(θl|Ml,Ft), can be found separately. For notational

simplicity, Ml will be left as implicit whenever θl appears in the rest of this paper. Hence, the
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posterior for the parameters for each event becomes:

p(θl|Ft) =
p(Ft|θl)p(θl)
p(Ft|Ml)

∝ p(Ft|θl)p(θl) (7)

Given a model class Mn̂, p(θl|Ft) of each event Ml ∈ Mn̂ is needed for broadcasting

an appropriate warning. In practice, a numerical scheme is often used to estimate the poste-

rior PDF. As mentioned in Section 2, two data features, Fj(t) = [Fp,j(t), Fa,j(t)], are chosen

for each station j, where Fp,j is the P-wave picking time and Fa,j is the logarithm of maxi-

mum displacement amplitude. Also, five earthquake parameters, θl = [latl, lonl, dl,ml, t0l], are

needed for each event Ml, which are the hypocenter latitude, hypocenter longitude, hypocen-

ter depth, earthquake magnitude and origin time, respectively. In Section 3.3.1, we present the

RBIS (Rao-Blackwellized Importance Sampling) method for estimating the posterior PDF.

This involves analytically integrating over some parameters and only sampling the remain-

ing ones. We use it for improving the efficiency of the Importance Sampling. The likelihood

functions in the Bayesian approach are calculated based on the existing JMA EEW model,

as explained in Section 3.3.2.

3.3.1 Rao-Blackwellized Importance Sampling of Posterior PDF

Figure 2 shows the variable dependency between the chosen data features and earthquake

parameters. Fp,j is a function of hypocenter location and origin time, and Fa,j is a function

of location, origin time and magnitude. Note that Fa,j is a function of origin time because

it is calculated from different attenuation relations depending on the state of station j (no

wave arrived, P-wave arrived or S-wave arrived), which is controlled by the origin time of an

earthquake. Based on this model and the assumption that the predictions of the station data

are independent of each other, the likelihood function p(Ft|θl) in Equation 7 is expressed as:

p(Ft|θl) =

Nst∏
j=1

[p(Fp,j(t)|θl)p(Fa,j(t)|θl)] (8)

For the likelihood model given next in Section 3.3.2, there is no analytical solution for

the posterior PDF, so a numerical method is required. Here, we use importance sampling

because it is computationally efficient for real-time running of EEW. Based on the structure

shown in Figure 2, however, we observe that magnitude m can be analytically treated without

significantly increasing the complexity of the equations. Hence, θl is partitioned into [m, θ̃l],

where θ̃l includes all the other parameters that will be sampled. A set of sequential proposal

PDFs based on using the posterior PDF from the previous time step can be implemented for

efficiency in the importance sampling scheme (Section 4.5 shows an example). We therefore
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Figure 2. Bayesian network model of probabilistic dependency between the data features Ft and

earthquake parameters Θn.

use the RBIS method with a sequential proposal PDF as follows:

p(θl|Ft) = p(m|θ̃l,Ft)p(θ̃l|Ft) ≈
Ns∑
i=1

wip(m|θ̃(i)l ,Ft)δ(θ̃l − θ̃
(i)
l ) (9)

where Ns samples θ̃
(i)
l are drawn randomly from the proposal PDF q(θ̃l) and the corresponding

importance weights are:

wi ∝
p(θ̃

(i)
l |Ft)

q(θ̃
(i)
l )

with

Ns∑
i=1

wi = 1 (10)

In order to exploit the information from the previous time step and maintain computa-

tional efficiency, we choose q(θ̃
(i)
l ) to be a uniform distribution with a domain that contains

the high probability regions in p(θ̃
(i)
l |Ft−1). By using a uniform distribution for both the prior

p(θl) and the proposal PDF q(θl), the weights wi simplify to:

wi ∝ p(Ft|θ̃(i)l ) (11)

where p(Ft|θ̃(i)l ) =

∫
p(Ft|θ(i)l )p(m) dm, θ

(i)
l = [θ̃

(i)
l ,m] (12)

3.3.2 Gaussian likelihood implementation

A Gaussian model is chosen for predicting the features Fp,j and Fa,j because of the resulting

simplicity in the EEW algorithm:

(a) Gaussian likelihood for pick time:

p(Fp,j(t)|θl) =
1

σp,j(θl)
φ

(
Fp,j(t)− µp,j(θl)

σp,j(θl)

)
(13)

where µp,j(θl) = theoretical P-wave arrival time at station j given θl calculated using a simple

1D velocity structure (Ueno et al. 2002) and σp,j(θl) = empirical standard deviation for the

P-wave arrival time model
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(b) Gaussian likelihood for log of maximum displacement amplitude:

p(Fa,j(t)|θl) =
1

σa,j(θl)
φ

(
Fa,j(t)− µa,j(θl)

σa,j(θl)

)
(14)

where µa,j(θl) = attenuation equation for Fa,j at station j given θl and σa,j(θl) = empirical

standard deviation for the attenuation model

In general, a Gaussian likelihood model with either a Gaussian prior or an uniform prior

will result in a Gaussian posterior, allowing analytical Bayesian updating, if the mean of the

likelihood function is a linear function of the model parameters. However, in the case of EEW,

µa,j(θl) is usually a nonlinear function of the parameters θl, so an analytical solution cannot

be obtained. We therefore use the RBIS approximate numerical method. Here, we use the

JMA ground motion prediction equations (GMPE) for the P- and S-waves (Kamigaichi, 2004;

JMA, 2010, 2012) to define µa,j(θl) and σa,j(θl). Let Ss be the set of indices of S-wave arrived

stations, Sp be the set of indices of P-wave arrived stations, and Sn be the set of indices of

no wave-arrival stations, then the mean of the log of the maximum displacement amplitude

is expressed as:

µa,j =


µnoise,j j ∈ Sn

0.72m− 1.2logRj − 0.0005Rj + 0.005d− 0.46 j ∈ Sp

0.87m− logRj − 0.0019Rj + 0.005d− 0.98 j ∈ Ss

(15)

Here, Rj is the hypocenter-to-station distance (km) as a function of lat, lon and d; µnoise,j and

σ2a,j(j ∈ Sn) are the mean and variance of the station noise, which are determined empirically

based on the historical data for station j. Note that t0 plays a role in deciding the set that

station j belongs to based on a travel-time model.

3.3.3 Analytical expressions for the algorithm

Although a fully analytical solution is not available, the chosen likelihood function has a mean

that depends linearly on earthquake magnitude m given the other parameters θ̃l (see Equation

15). Hence, one can apply the idea of RBIS to m to obtain a partial analytical solution that

improves both the accuracy and efficiency of the numerical scheme.

EEW requires the mean (expected value) and standard deviation of the earthquake param-

eters given the current data set, i.e., E[θl|Ft] and V ar[θl|Ft], in order to release appropriate

warnings. Note that V ar[θl] = E[θ2l ] − (E[θl])
2 and based on Equation 9, for any function
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f(θl):

E[f(θl)|Ft] =

∫
f(θl)p(θl|Ft) dθl

≈
∫
f(θl)

Ns∑
i=1

wip(m|θ̃(i)l ,Ft)δ(θ̃l − θ̃
(i)
l ) dθl

=

Ns∑
i=1

wi

∫
f(m, θ̃

(i)
l )p(m|θ̃(i)l ,Ft) dm

(16)

We can therefore derive the following expressions:

E[θ̃l|Ft] =

Ns∑
i=1

wiθ̃
(i)
l

V ar[θ̃l|Ft] =

Ns∑
i=1

wi(θ̃
(i)
l )2 − (E[θ̃l|Ft])2

(17)

E[m|Ft] =

Ns∑
i=1

wi

∫
mp(m|θ̃(i)l ,Ft) dm

V ar[m|Ft] =

Ns∑
i=1

wi

∫
m2p(m|θ̃(i)l ,Ft) dm− (E[m|Ft])2

(18)

As a result, we need analytical expressions for p(m|θ̃(i)l ,Ft) and wi (or p(Ft|θ̃(i)l )). Then we can

also derive an analytical expression for p(Ft|Ml) in Equation 5 or 6. For notational simplicity,

l is omitted whenever (i) occurs since the sample index i is always linked with the earthquake

index l:

(a) Analytical form for p(m|θ̃(i),Ft)

Note thatm only depends on Fa,j for j = 1, ..., Nst, i.e., p(m|θ̃(i),Ft) = p(m|θ̃(i), Fa,1, ..., Fa,Nst).

Again, by Bayes’ Theorem and the independent data assumption:

p(m|θ̃(i), Fa,1, ..., Fa,Nst) ∝ p(Fa,1, ..., Fa,Nst |θ(i))p(m) = p(m)

Nst∏
j=1

p(Fa,j |θ(i)) (19)

Applying Equation 14 and re-arranging Equation 15, we can rewrite the expression for p(Fa,j |θ(i))
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to be:

p(Fa,j |θ(i)) =


1

σ
(i)
a,j

φ

(
Fa,j−µnoise,j

σ
(i)
a,j

)
j ∈ Sn

1

σ
(i)
a,j

φ

(
m−f (i)JMA,j

α
(i)
j σ

(i)
a,j

)
j ∈ Sp ∪ Ss

where f
(i)
JMA,j =

(Fa,j + 1.2logR(i) + 0.0005R(i) − 0.005d(i) + 0.46)/0.72 j ∈ Sp

(Fa,j + logR(i) + 0.0019R(i) − 0.005d(i) + 0.98)/0.87 j ∈ Ss

and α
(i)
j =

1/0.72 j ∈ Sp

1/0.87 j ∈ Ss

(20)

Here, R(i) and d(i) are obtained from θ̃(i) and σ
(i)
a,j depends on sample θ̃(i) and station j. Note

that in actual implementation for the case study, a bias correction of 0.3 is added to f
(i)
JMA,j

if the term is calculated from Hi-net stations following Yamada et al. (2014).

By the well-known property of product of Gaussian functions, we can derive the following

expression:

∏
j∈Sp∪Ss

1

σ
(i)
a,j

φ

m− f (i)JMA,j

α
(i)
j σ

(i)
a,j

 =
z(i)

σ
(i)
m

φ

(
m− µ(i)m
σ
(i)
m

)

where
(
σ(i)m

)2
=

 ∑
j∈Sp∪Ss

1(
α
(i)
j σ

(i)
a,j

)2

−1

, µ(i)m =
(
σ(i)m

)2 ∑
j∈Sp∪Ss

f
(i)
JMA,j(

α
(i)
j σ

(i)
a,j

)2


and z(i) =

√
2π
(
σ
(i)
m

)2
∏
j∈Sp∪Ss

√
2π
(
σ
(i)
a,j

)2 exp

1

2


(
µ
(i)
m

)2
(
σ
(i)
m

)2 − ∑
j∈Sp∪Ss

(
f
(i)
JMA,j

)2
(
α
(i)
j σ

(i)
a,j

)2



(21)

As a result, we conclude that:

Nst∏
j=1

p(Fa,j |θ(i)) =
z(i)

σ
(i)
m

φ

(
m− µ(i)m
σ
(i)
m

) ∏
j∈Sn

1

σ
(i)
a,j

φ

(
Fa,j − µnoise

σ
(i)
a,j

)
(22)

(b) Analytical form for p(Ft|θ̃(i))

First, we find an analytical expression for p(Ft|θ(i)) by combining Equation 8, 13 and 22:

p(Ft|θ(i)) =
z(i)

σ
(i)
m

φ

(
m− µ(i)m
σ
(i)
m

) ∏
j∈Sn

1

σ
(i)
a,j

φ

(
Fa,j − µnoise,j

σ
(i)
a,j

)
Nst∏
j=1

1

σ
(i)
p,j

φ

(
Fp,j − µ(i)p,j

σ
(i)
p,j

)
(23)

where µ
(i)
p,j and σ

(i)
p,j depend on sample θ̃(i) and station j.
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Combining Equation 12 and 23:

p(Ft|θ̃(i)) = z(i)
∏
j∈Sn

1

σ
(i)
a,j

φ

(
Fa,j − µnoise,j

σ
(i)
a,j

)
Nst∏
j=1

1

σ
(i)
p,j

φ

(
Fp,j − µ(i)p,j

σ
(i)
p,j

)∫
p(m)

σ
(i)
m

φ

(
m− µ(i)m
σ
(i)
m

)
dm

(24)

(c) Choice of prior p(m)

The integral in Equation 24 can be solved analytically only for some specific choices of the

prior p(m), for example, a Gaussian prior or a uniform prior. One common choice is a prior

that derives from the well-known Gutenberg-Richter law, which is used, for example, in the

PRESTo approach (Satriano et al. 2011; Zollo et al. 2009). Based on our empirical study for

Japan, this prior results in a consistent underestimation of the magnitude when warnings are

necessary, and so a uniform prior is chosen instead:

p(m) =

0 m < a & m > b

1/(b− a) a ≤ m ≤ b
(25)

where the parameters are chosen to be a = 0 and b = 10 because this is the likely range of

earthquake magnitudes. As a result, the integral in Equation 24 can be expressed in terms of

the Gaussian PDF and CDF to obtain:

p(Ft|θ̃(i)) =
z(i)c

(i)
0

b− a
∏
j∈Sn

1

σ
(i)
a,j

φ

(
Fa,j − µnoise,j

σ
(i)
a,j

)
Nst∏
j=1

1

σ
(i)
p,j

φ

(
Fp,j − µ(i)p,j

σ
(i)
p,j

)

where c
(i)
0 = Φ

(
b− µ(i)m
σ
(i)
m

)
− Φ

(
a− µ(i)m
σ
(i)
m

) (26)

This constant c
(i)
0 is due to the prior p(m) truncating the Gaussian PDF for m outside [a, b].

Note that in most cases, c
(i)
0 ≈ 1 because the Gaussian PDF with µ

(i)
m and σ

(i)
m should have

most of its density between the chosen prior values a and b. Also, if Sp and Ss are both a null

set ∅, the factor
z(i)c

(i)
0

b−a is deleted from Equation 26.

(d) Analytical solution for
∫
mp(m|θ̃(i),Ft) dm and

∫
m2p(m|θ̃(i),Ft) dm

These two integrals in Equation 18 are simply the first and second moment of the uniform

PDF if Sp and Ss are both a null set ∅, or the first and second moment of the truncated
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Gaussian PDF otherwise. Their analytical expressions can be written as follow:∫
mp(m|θ̃(i),Ft) dm ≡ µ̃(i)m

=


a+b
2 , Sp ∪ Ss = ∅

µ
(i)
m + σ

(i)
m

c
(i)
0

[
φ

(
a−µ(i)m

σ
(i)
m

)
− φ

(
b−µ(i)m

σ
(i)
m

)]
, otherwise∫

m2p(m|θ̃(i),Ft) dm =
(
µ̃(i)m

)2
+
(
σ̃(i)m

)2

where
(
σ̃(i)m

)2
=


(b−a)2

12 , Sp ∪ Ss = ∅(
σ
(i)
m

c
(i)
0

)2

c̃(i), otherwise

(27)

c̃(i) =
(
c
(i)
0

)2
+
c
(i)
0 (a− µ(i)m )

σ
(i)
m

φ

(
a− µ(i)m
σ
(i)
m

)
− c

(i)
0 (b− µ(i)m )

σ
(i)
m

φ

(
b− µ(i)m
σ
(i)
m

)

−

(
φ

(
a− µ(i)m
σ
(i)
m

)
− φ

(
b− µ(i)m
σ
(i)
m

))2 (28)

Finally, we can obtain an analytical expression for the evidence for the earthquake event

Ml, i.e., p(Ft|Ml) in Equation 5 or p(Fj(t)|Ml) in Equation 6 (depending on the choice of

criterion), based on the samples and weights from RBIS (Newton 1994). From our empirical

study, we found that p(Fj(t)|θ̂l), where θ̂l is the optimal value of θl that maximizes p(θl|Ft),

is a good estimator for p(Fj(t)|Ml). Hence, to further reduce computational effort, we used

the following criterion in our case study:

p(Fj(t)|θ̂l) < τnew for newly triggered station j & ∀l = 1, ..., n̂ (29)

4 PRACTICAL IMPLEMENTATION FOR MULTI-EVENTS EEW

ALGORITHM

In this section, the theory explained in the previous section is implemented for an actual

EEW system. To improve computational efficiency, this practical implementation requires

reduction of the sampling space, choice of stations to be used, controlling the number of

events and sample updating. An outline of the implementation is summarized at the end of

this section.

4.1 Reduction of the sampling space

The earthquake magnitude can be estimated by an analytical solution in the proposed RBIS-

based EEW algorithm (see Section 3.3). Hence, the sampling space is shrunk from five to
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four dimensions: latitude, longitude, depth and origin time of an earthquake. The number

of samples required to accurately represent a PDF usually increases exponentially as the

dimension of the sampling space increases. Therefore, reduction of the sampling space is

always desired. In general, the uncertainty in origin time is very small given the hypocenter

location. This means that the posterior PDF of origin time given the hypocenter location

often peaks around one value. Instead of using many samples for the origin time as a separate

sampling dimension, we can estimate the peaked PDF by only one sample calculated based

on a deterministic model for each sample of hypocenter location. The single sample value is

found by minimizing the residual between the P-wave picking time and the theoretical P-

wave arrival time from all triggered stations in an event. As a result, we are able to reduce

the sampling dimension from five to three (excluding magnitude and origin time).

4.2 Use of non-triggered data for P-wave picking time likelihood model

Most of the earthquake location algorithms only utilize the data from triggered stations and

ignore stations without a recorded picking time. However, the fact that a P-wave has not yet

arrived at a station is also an important piece of information. Based on the concept of using

“not-yet-arrived data” from Horiuchi et al. (2005) and Satriano et al. (2008), we adopt the

following rules for calculating p(Fp,j(t)|θl) in Equation 13:

(a) When station j has not yet been triggered, but the theoretical arrival time suggests

the opposite: the Gaussian variable Fp,j(t) equals current time to penalize the estimation.

Additionally, p(Fp,j(t)|θl) has a lower limit, e.g., 0.004 (represents a three standard deviation

error probability under a Gaussian model), in order to avoid a single malfunctioned station

that will never be triggered driving the final likelihood value of an event to zero.

(b) When station j has not yet been triggered and the theoretical arrival time suggests the

same: p(Fp,j(t)|θl) = 1, which represents that no information is extracted from this station.

(c) When station j has been triggered: Fp,j(t) equals the recorded picking time value and

p(Fp,j(t)|θl) is directly calculated using Equation 13.

4.3 Choice of stations used in likelihood models

Seismic waves attenuate when traveling through the ground and the uncertainty of the attenu-

ation model accumulates as the traveling distance increases. Hence, information from stations

that are far from the hypocenter does not make a significant contribution to estimation of

the earthquake parameters. Theoretically, in the absence of noise, four stations are enough to
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pinpoint the location and origin time of an earthquake. In practice, the parameters of most

earthquakes can be accurately identified based on data from around five to ten stations clos-

est to the hypocenter. However, for offshore earthquakes, because the station distribution is

often one-sided, wide azimuth coverage becomes an important factor to accurately estimate

the hypocenter location and origin time.

To reduce the computation time, instead of using all stations for every event, Ft is reduced

to include only information from a small subset of stations (e.g., 20 stations for our case study)

that are selected based on the first triggered station of an event using the following two-step

method:

(a) Select a subset of stations that have the closest distance to the triggered station. For

example, in our case study, we pick 10 closest stations to the center of the Voronoi cell of

the first triggered station based on the assumption that the hypocenter is most likely to be

around that center point without any further information given.

(b) Select the remaining stations one-by-one that contribute to an increase of azimuth

coverage from stations that are close to the center of the Voronoi cell of the first triggered

station. For example, in our case study, the remaining 10 stations are selected such that each

leads to an increase in azimuth coverage. If the first 10 stations have a complete azimuth

coverage of 360o already (often the case for an inland earthquake), the remaining 10 stations

will simply be chosen from the closest stations.

Theoretically, exclusion of data from certain stations is equivalent to assuming p(Fj(t)|θl) ≈

1 (no important information is extracted) for those stations. Figure 3 shows an example of

the resulting station selection for a first triggered station along the coastline and an inland

first triggered station.

4.4 Creating, merging and deleting events

To achieve a fast algorithm, we use the approximate model class selection, as shown in Equa-

tion 29, instead of the full Bayesian model class selection scheme. For improving robustness of

the system, a merging or deleting event criterion that allows decreasing the number of events

in Mn̂ is added. Each step is summarized as follow:

(a) Creating based on approximate model class selection: To choose an equivalent to thresh-

old τnew in the approximate scheme, we create a new event if the current data is outside three

standard deviations of the optimal Gaussian likelihood model.

(b) Deleting based on picking time alignment : After the triggering of the first few stations
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Figure 3. Example of station selection in Japan for (a) coastline and (b) inland first triggered station.

Seismic stations are denoted in triangles. Selected stations are filled in black. The gray area represents

the Voronoi cell of the first triggered station (the triangle inside the gray area).

of an event (e.g., 7 out of the 20 stations in our case study), the hypocenter and origin

time estimates will start to converge. From this moment, if the observed picking times of

the stations deviate from the theoretical P-wave arrival times based on the current parameter

estimates (e.g., 4 standard deviation under a Gaussian model), this event is likely to be falsely

identified and can be deleted from the algorithm.

(c) Merging based on hypocenter and origin time estimate: To avoid false alarms due to

a duplicated event caused by noisy data, it is beneficial to maintain a unique set of event

records in the algorithm. Two events are merged if their converged hypocenter and origin

time estimates are reasonably close (e.g., two events are within 10km radius and the expected

origin times are less than three seconds apart in our case study). In some cases, even if the

two events are actually not identical events, it is beneficial to merge them within the EEW

system in order to avoid issuing a confusing warning.

4.5 Prior, proposal PDF and sample updating

For the importance sampling, we draw initial samples from a uniform prior distribution in a

three-dimensional hypocenter space (latitude, longitude and depth). The size of the sampled

area is chosen to cover the Voronoi cell of the first triggered station, and the depth range is

between 0km to 100km. In order to maintain the efficiency of the algorithm, the prior for both
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latitude and longitude is limited to a maximum width of one degree from the first triggered

station. However, for offshore earthquakes, the optimal solution may be outside this prior and

it requires some treatment to achieve a fast and robust convergence to the optimal solution.

The proposed algorithm therefore estimates earthquake parameters based on a set of samples

drawn from a proposal PDF, which is constructed initially based on the prior PDF when an

event is first created. After that, to construct the proposal PDF based on information used in

the posterior PDF of the earthquake parameters from the previous time step, we divide the

procedure into two cases:

(a) If the distance between the mean epicenter location at the current and the previous

time step exceeds some predetermined ratio of the range of the prior on the latitude and

longitude, the new proposal PDF for the epicenter is constructed by shifting the center of the

uniform prior to the mean of the epicenter obtained from the current time step (Figure 4).

(b) Otherwise, a new proposal PDF is constructed based on a resampling scheme (Liu &

Yamada 2014) for better convergence of the hypocenter estimate.

Case (b) is for reducing the variance of importance sampling, and so to improve the efficiency

of the algorithm. Most of the inland earthquakes fall into this case. Case (a) is designed to cover

the case of an offshore earthquake, since we use a smaller prior to maintain computational

efficiency. The new proposal PDF allows fast convergence to the actual epicenter location

when it is away from the area of the current samples. For the criterion in case (a), we choose

a ratio of 50% for both latitude and longitude based on empirical experience considering a

trade-off between the efficiency of importance sampling convergence and the variance of the

expected value after new data is collected.

4.6 Algorithm summary

Actual implementation of the method can be summarized as a two-step algorithm at each

given time step t (Figure 5). Starting from an initial step t = 0, first, earthquake parameters

of each existing event are updated based on the newly received seismic data from the network.

Second, the estimate of the number of concurrent events (n̂) is updated by the approximate

model class selection scheme with the predetermined creating, merging and deleting criteria.

The process is repeated until the termination of the process.

Step 1 : To update the earthquake parameters of each existing event n, we repeat the following

steps for n = 1 to n̂:

(a) Extract information from the waveform data to compute the features used in event n.
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Figure 4. Example of shifting the proposal PDF in Case (a). Triangles are seismic stations. Solid

triangle is the triggered station for a potential new event. Dotted rectangle is the uniform prior PDF

with a mean epicenter estimated at the black star. The new uniform proposal PDF is shifted to the

solid rectangle.

(b) Update weights for the new feature values as in Section 3.3.

(c) Construct a proposal PDF by the suggested method in Section 4.5 to update samples

if necessary.

(d) Update all earthquake parameter estimates using the RBIS method, as explained in

Section 3.3.

Step 2 : After updating the estimates, we compute the most probable number of concurrent

events by the approximate model class selection scheme (see Section 4.4):

(a) Merge existing events (reduce number of concurrent events) that have similar converged

estimates of earthquake parameters.

Figure 5. Flowchart of a two-step RBIS EEW algorithm at each time step t.
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Table 1. Information of the Tohoku foreshock on March 9, 2011.

Date Origin Time Latitude Longitude Depth(km) Magnitude

2011/3/9 11:45:13 38.33 143.28 8.28 M7.3

(b) Delete existing events (reduce number of concurrent events) that have inconsistent

theoretical P-wave arrival times comparing to the observed P-wave picking times from the

current data.

(c) Create a new event (increase number of concurrent events) with a newly triggered

station as the theoretical first triggered station for the event when the criterion is met.

(d) Finally, we obtain the updated most probable number of concurrent events, n̂.

5 CASE STUDY RESULTS AND DISCUSSION

5.1 Performance of a single event

First, we illustrate the performance of the proposed algorithm for a single large event on

March 9, 2011. This event occurred in the Pacific ocean off the Tohoku region in Japan and it

is considered as a foreshock of the Tohoku event on March 11. Table 1 shows the information

of this event.

Figure 6 shows three snapshots of the distribution of weighted samples for this event.

After the earthquake started at 11:45:13, its P-wave first arrived at the coastline 28s later

and a new event was triggered in the system at 11:45:41. The first set of samples were created

using the prior based on Voronoi cell information (Figure 6(a)). Then, the samples migrate

toward the actual epicenter after 1s (Figure 6(b)), and the samples converge stably 5s after

the event is triggered (Figure 6(c)). The posterior distribution represented by the weighted

samples is actually very peaked around the actual epicenter.

Figure 7 shows the two components that sum up to the final weight in log-scale: the P-

wave picking time (Fp) likelihood and the maximum displacement amplitude (Fa) likelihood.

One can observe that when the event is first triggered, the scale of the picking time likelihood

is smaller compared to a few seconds later. At this early stage, there is not enough picking

time information from the stations to fully constrain the hypocenter location. The maximum

displacement amplitude likelihood helps refine the convergence to a smaller region. After that,

the picking time likelihood becomes reliable enough to dominate the weight contribution and

the amplitude likelihood is no longer so important.

Figure 8 shows a time history of the five earthquake parameters (latitude and longitude
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Figure 6. Weighted-sample distribution for the foreshock on March 9, 2011 at (a) t = 0s, (b) t = 1s

and (c) t = 5s after the first trigger. Color of the samples is proportional to ln(weight) with higher value

in red and lower value in blue. Dark and light blue stars indicate the actual and estimated epicenter

location, respectively. Open black triangles are seismic stations. Solid ones are selected stations for this

event, and the blue triangle is the first triggered station.

are combined to calculate the error of epicentral distance R). The algorithm takes 30s–40s to

completely converge because it is an offshore event. The depth estimate is not as good as the

other parameters, as expected, and its uncertainty is also significantly higher than the others.

Figure 7. Distribution of the P-wave picking time (Fp) likelihood at (a) t = 0s, (b) t = 1s and (c)

t = 5s and the maximum displacement amplitude (Fa) likelihood at (a) t = 0s, (b) t = 1s and (c)

t = 5s of the sample weights for the foreshock on March 9, 2011. The symbols are in the same format

as in Figure 6.
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Figure 8. Convergence summary for the foreshock on March 9, 2011. (a) Time histories of the epicen-

tral distance error between the estimated epicenter and the actual epicenter, (b) depth, (c) origin time

error and (d) magnitude. The solid and dashed lines are the mean and ±1 std. values, respectively.

The horizontal dash-dotted lines are actual parameter values of the earthquake. The x-axis shows the

time (sec) after the event is triggered.

5.2 Performance of two overlapped events

Next, we show the results for two concurrent events that overlap with each other within a

short period of time. The two events occurred on March 19, 2011 in the Ibaraki Prefecture.

The two hypocenters were at the same location and the origin times of the two events were

only 28s apart, which makes it very difficult to separate the two events for EEW. Table 2

shows the information of both events.

Figure 9 shows four snapshots of the distribution of weighted samples for the two overlap-

Table 2. Information of the two overlapped concurrent events on March 19, 2011.

Date Origin Time Latitude Longitude Depth(km) Magnitude

2011/3/19 18:56:20 36.78 140.57 5.76 M4

2011/3/19 18:56:48 36.78 140.57 5.37 M6.1
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Figure 9. Weighted-sample distribution for the two concurrent events on March 19, 2011. Colored

samples in the upper two plots represent the first event. Gray and colored samples in the lower two

plots represent the first and second event, respectively. The symbols are in the same format as in Figure

6. The estimated epicenters in (c) and (d) overlap with the actual epicenter.

ping events. The first event started at 18:56:20 and the P-wave arrived at the closest station 3s

later (Figure 9(a)). Because it was an inland earthquake, the initial sample set at the time of

event trigger was already well converged to the actual epicenter. The samples were completely

stable after a few seconds later (Figure 9(b)). The second event started at the exact same

location at 18:56:48 and a new event was successfully triggered by the system 3s later. Again,

the prior sample set was already well converged at the time the second event was triggered

and the samples were completely stable a few seconds later.

Figure 10 shows a time history of the five earthquake parameters. Compared to the single

offshore event on March 9 (Figure 8), the errors for all parameters are small when the events

are first triggered. This is typical of the fast convergence that is achieved for the case of

an inland earthquake. The only problem is that the magnitude estimate of the first event is

affected by the seismic waves generated by the second event. After triggering from the second

event, the magnitude estimate of the first event converges to the magnitude of the second

event. However, no false alarm is triggered for the purpose of EEW because the two events

are close enough in time and space. Although one can set a more sophisticated convergence

criterion to appropriately stop estimating the parameters for an event 30s after it is triggered,
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Figure 10. Convergence summary of the new algorithm for the two concurrent events on March 19,

2011. Black lines and gray lines correspond to the first and second event, respectively. The format is

the same as in Figure 8.

this is likely to increase the error for many other events. Therefore, it may not be practical to

do so for the purpose of EEW.

5.3 Summary of all identified events

After continuously running our proposed algorithm with the 50-day data (March 9 to April

30), a total of 895 earthquakes have been identified. However, the 10-hour data from 15:00 to

23:59 on March 11 was excluded from the comparison with the catalogue, because a significant

increase of seismicity after the mainshock at 14:46 results in an incomplete catalogue which

makes it difficult to compare. As a result, we use a total of 850 earthquakes for the comparison.

Figure 11 shows the magnitude histogram of the 850 earthquakes. The number of earthquake

with magnitude between 3 to 7 follows the Gutenberg-Richter relationship. Therefore, the

proposed algorithm can reliably identify M3 or above earthquakes.

Figure 12 shows the histograms of the residuals of latitude, longitude, depth, origin time,

magnitude and Japanese seismic intensity, calculated by subtracting the catalogue values from

our EEW algorithm estimates. The relatively peaked histograms verify that the proposed
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Figure 11. Histogram of the catalogue magnitudes for the 850 earthquakes between March 9 and

April 30 (plotted in log-scale).

algorithm can predict the earthquake parameters accurately. A relatively higher variance is

observed for longitude estimation of some events. Most of them are due to offshore events,

where there is a lack of seismic station coverage along the longitudinal direction in the Tohoku

region. Also, due to the low sensitivity of travel time to depth, the depth shows the largest

variance among the three components of the hypocenter location estimate. It may appear in

the histogram that the magnitude estimates have a slight bias towards overestimation. To

check this, we show the comparison between catalogue and estimated magnitude in Figure 13.

It shows that some of the earthquakes with magnitude 2.5−4.5 are largely overestimated. This

may be because the signal to noise ratio is low for smaller earthquakes, especially for the long

period component. In terms of EEW seismic intensity, the proposed algorithm demonstrates

a sufficient performance based on the JMA standard, where ±1 unit of error for EEW seismic

intensity estimates is expected (JMA, 2005; Kamigaichi et al., 2009).

5.4 Comparison with JMA EEW

There were 71 warnings released by the JMA EEW system within the period of March 11

to April 30 (Tamaribuchi et al. 2014). We compare the accuracy of the proposed algorithm

with that of the existing JMA EEW system using Japanese seismic intensity. Warnings are

released to the public if the expected intensity is greater than or equal to 5−. Appendix A

lists the details of all 71 events, including the results of the seismic intensity estimates from
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Figure 12. Residual histogram of (a) latitude (deg), (b) longitude (deg), (c) depth (km), (d) origin

time (sec), (e) magnitude and (f) Japanese seismic intensity. X-axis shows the residual calculated by:

new EEW algorithm estimates – Catalogue values. Y-axis shows the number of earthquakes. µ = mean

and σ = standard deviation.

Figure 13. Plot of EEW estimated magnitudes (final) versus catalogue magnitudes. The solid black

line indicates the case of perfect prediction.
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the catalogue, JMA EEW system, an algorithm proposed by Tamaribuchi et al. (2014) and

the proposed algorithm in this paper.

Our algorithm prevents over 90% of the false alarm cases produced by the existing JMA

EEW. There are only three cases of incorrect warnings produced by our algorithm. In one case,

the algorithm incorrectly deleted an actual event due to the interference of multiple aftershocks

around that period (Event 2 had an accurate seismic intensity estimate, but the event was

incorrectly deleted after a few seconds). This suggests a more sophisticated deleting criterion

is desirable. In another case, there were two concurrent earthquakes that were too close in time

and space, as explained in Section 5.2 (Event 34). In the final case, the algorithm produced

accurate estimates of the earthquake parameters, but due to a deficiency in the attenuation

relationship, an underestimate of the maximum seismic intensity was produced (Event 46).

Figure 14 shows the histograms of seismic intensity residual for the three EEW systems

based on the 71 selected earthquakes. It verifies that the proposed algorithm improves the

performance of EEW in over 90% of the cases based on seismic intensity compared to the

existing JMA EEW system, which has a difficulty in handling multi-events. Note that Figure

14 shows that the algorithm proposed in this paper improves the seismic intensity estimate by

around 30% compared with the one proposed by Tamaribuchi et al. (2014). In fact, both algo-

rithms use a probabilistic approach to solve the multi-events cases. A major difference is that

our algorithm includes both Hi-net and JMA data for estimating all earthquake parameters

and we use only two features (P-wave picking time and maximum displacement amplitude),

whereas Tamaribuchi et al. (2014) use a total of four features (the outputs of a B-∆ method

and principal component analysis, P-wave picking time and maximum displacement ampli-

tude) and JMA data only. Not only does the inclusion of Hi-net data improve the warning lead

time (Yamada et al. (2014) shows an average increase of 3.6s for the EEW warning lead time),

it is shown here that it also improves the warning accuracy. Although some treatment of the

data is needed in order to integrate data from the two different seismic networks (Yamada

et al. 2014), the resulting benefits make it worthwhile to do so.

6 CONCLUSION

In order to improve the accuracy of EEW, this study proposes a probability-based EEW

algorithm to identify multiple concurrent earthquakes. An approximate method for Bayesian

model class selection is applied to solve for the number of concurrent events in the EEW multi-

events problem. Because of the short time limitations of EEW, a simple numerical method,

the Rao-Blackwellized Importance Sampling with a set of sequential proposal PDFs, is used
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Figure 14. Histogram of the error on the seismic intensity estimate of (a) the existing JMA EEW

system; (b) an algorithm proposed by Tamaribuchi et al. (2014) (TYW2014); and (c) our algorithm

(RBIS) for the selected 71 earthquakes. The x-axis shows the error of the Japanese seismic intensity

calculated by: EEW estimate - Catalogue value.

to estimate the earthquake parameters and the necessary equations are derived analytically

as much as possible.

The existing JMA EEW system is used to demonstrate the process of applying the pro-

posed probabilistic method to an existing deterministic EEW model. Two features, the P-wave

picking time and the maximum displacement amplitude, are chosen for earthquake parameter

estimation. A Gaussian model is used for the likelihood function of both features. A real ex-

ample based on two months data (March 9 to April 30, 2011) around the time of the March

11, 2011 Tohoku earthquake is studied to verify the proposed algorithm. Over 90% of the false

alarms are avoided by our algorithm, which accurately identifies multiple concurrent events

in comparison with the existing JMA EEW system. Also, the importance of having a denser

network is demonstrated by the examples. The integration of data from the JMA and Hi-net

stations in a single algorithm greatly enhances the average warning lead time (around 3.6s)

and the accuracy of the EEW predictions (around 30% in seismic intensity).
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APPENDIX A: EARTHQUAKE LISTS FOR JMA EEW

Table of the details of 71 earthquakes for which the JMA EEW system issued a warning

between March 11 and April 30, 2011. Results of the maximum seismic intensity estimates

from the catalogue, JMA EEW system (JMA), an algorithm proposed by Tamaribuchi et al.

(2014) (TYW2014) and the proposed algorithm in this paper (RBIS) are listed. If the error

of the seismic intensity is within ±1, or the observed and estimated intensities are both less

than 5– (no warning), we define it is an accurate warning. The inaccurate warnings produced

by each of the three algorithms are shown by an underline on the seismic intensity values.
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No. Date Time Location Magnitude Catalog JMA TYW2014 RBIS

1 2011-03-11 14:46 Off Miyagi Pref. 9 7 6– 7 6–

2 17:40 Fukushima Pref. 6 5+ 5+ 5– 5–b

3 19:35 Off Fukushima Pref. 5.1 4 5+ 4 3

4 2011-03-12 3:11 Off Fukushima Pref. 6 3 5– 5– 4

5 3:59 Niigata Pref. 6.7 6+ 6– 6+ 6+

6 4:08 Off Ibaraki Pref. 5.2 4 5– 5– 4

7 4:16 Off Fukushima Pref. 4 3 5+ 4 0a

8 4:31 Niigata Pref. 5.9 6– 5+ 6– 5+

9 5:11 Off Miyagi Pref. 6.4 3 5+ 4 3

10 5:42 Niigata Pref. 5.3 6– 5– 4 5–

11 6:19 Nagano Pref. 3.7 3 6– 4 3

12 6:34 Off Fukushima Pref. 4.8 3 6+ 4 0a

13 6:48 E off Chiba Pref. 4.6 3 5– 4 0a

14 22:15 Off Fukushima Pref. 6.2 5– 5– 5+ 4

15 22:24 Off Iwate Pref. 5 3 5– 0a 3

16 22:26 Off Iwate Pref. 5.4 2 5– 4 0a

17 23:34 Niigata Pref. 3.7 5– 6+ 4 4

18 23:43 Off Iwate Pref. 5.9 4 5– 5– 4

19 2011-03-13 8:25 Off Miyagi Pref. 6.2 5– 5– 5– 4

20 10:26 Off Ibaraki Pref. 6.6 4 5– 5– 5–

21 2011-03-14 10:02 Off Ibaraki Pref. 6.2 5– 5– 5+ 5–

22 15:12 Off Fukushima Pref. 5.2 4 6– 4 4

23 16:25 Off Ibaraki Pref. 5 3 6– 3 3

24 2011-03-15 1:36 Tokyo Bay 3.3 2 5– 3 0a

25 5:33 E off Chiba Pref. 3.6 1 5+ 3 0a

26 2011-03-15 7:29 Fukushima Pref. 4.3 3 6+ 4 3

27 22:31 Yamanashi Pref. 6.4 6+ 5– 6– 5+

28 2011-03-16 2:40 Chiba Pref. 4 2 5+ 4 0a

29 12:23 Off Fukushima Pref. 4.7 2 5– 3 0a

30 12:52 E off Chiba Pref. 6.1 5– 6– 6– 5+

31 2011-03-17 21:32 E off Chiba Pref. 5.7 4 5– 5– 5–

32 2011-03-19 6:18 Off Ibaraki Pref. 4.8 2 5– 3 0a

33 8:32 Off Iwate Pref. 5.7 4 5– 4 3

34 18:56 Ibaraki Pref. 4 4 5+ 6– 5+c

35 18:57 Ibaraki Pref. 6.1 5+ 5– 6– 5+

36 18:57 Ibaraki Pref. 6.1 5+e 5+e 6–e 5+e

37 2011-03-20 14:19 Fukushima Pref. 4.7 3 6– 4 4

38 2011-03-22 12:38 E off Chiba Pref. 5.9 4 6+ 4 4

39 2011-03-23 1:12 Off Ibaraki Pref. 5.4 3 6+ 3 3

40 7:12 Fukushima Pref. 6 5+ 5+ 6– 5+
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No. Date Time Location Magnitude Catalog JMA TYW2014 RBIS

41 2011-03-23 7:36 Fukushima Pref. 5.8 5+ 5+ 5+ 5+

42 8:46 E off Chiba Pref. 5 2 5– 3 2

43 2011-03-25 20:36 Off Miyagi Pref. 6.3 4 6– 5– 4

44 2011-03-27 19:23 E off Chiba Pref. 5 2 5+ 3 3

45 2011-03-28 7:23 Off Miyagi Pref. 6.5 5– 6– 5– 4

46 2011-04-01 19:49 Akita Pref. 5 5+ 5– 5– 4d

47 2011-04-03 16:38 Off Fukushima Pref. 5.4 4 5+ 4 4

48 2011-04-04 18:29 Off Fukushima Pref. 4 2 5+ 3 0a

49 2011-04-07 23:33 Off Miyagi Pref. 7.2 6+ 6– 6– 6–

50 2011-04-11 17:16 Fukushima Pref. 7 6– 6+ 7 6–

51 17:26 Fukushima Pref. 5.4 5– 5– 5+ 4

52 18:05 Fukushima Pref. 5.1 4 5– 5– 4

53 20:42 Off Fukushima Pref. 5.9 5– 6– 4 5–

54 2011-04-12 8:08 E off Chiba Pref. 6.4 5– 7 5– 5–

55 8:08 E off Chiba Pref. 6.4 5– 5– 5– 5–

56 10:23 Chiba Pref. 4.2 2 5+ 2 0a

57 12:20 E off Chiba Pref. 3.8 2 5– 0a 0a

58 14:07 Fukushima Pref. 6.4 6– 6– 6+ 5+

59 16:14 Nagano Pref. 3.1 2 6– 4 3

60 2011-04-13 10:07 Fukushima Pref. 5.7 5– 6+ 5– 4

61 2011-04-14 6:43 Fukushima Pref. 4.1 3 6– 3 2

62 12:08 Fukushima Pref. 5.4 4 5– 4 5–

63 20:24 Fukushima Pref. 4.4 3 6– 5– 3

64 21:24 Fukushima Pref. 3.9 3 5– 4 3

65 2011-04-15 23:34 Off Iwate Pref. 5 3 6+ 3 0a

66 2011-04-16 11:19 Ibaraki Pref. 5.9 5+ 5– 6+ 5–

67 2011-04-19 4:14 Akita Pref. 4.9 5– 5– 6– 5–

68 6:33 Ibaraki Pref. 4.8 3 5– 3 0a

69 2011-04-21 22:37 Chiba Pref. 6 5– 5– 5– 4

70 2011-04-24 20:50 Fukushima Pref. 3.1 3 6– 4 2

71 2011-04-30 2:04 E off Chiba Pref. 4.7 3 6+ 4 3

a: Events with small seismic intensity that did not trigger a new event

b: Correctly identified earthquake, but alarm later cancelled

c: Two overlapping concurrent events

d: Accurate hypocenter location, origin time and magnitude estimate with bad seismic intensity estimate

e: JMA EEW system created an extra fake event (other two systems did not)


