単位木造フレームを用いた振動台実験による木造軸組の耐震性能評価

鈴木祥之(京都大学防災研究所, suzuki@zeisei.dpri.kyoto-u.ac.jp) 後藤正美(金沢工業大学建築学科, gotou@neptune.kanazawa-it.ac.jp) 山田真澄(京都大学大学院修士課程, yamada@zeisei.dpri.kyoto-u.ac.jp)

1.研究の目的

本研究では,各地に存在する様々な構法の木造建物の 耐震性能評価法や耐震設計法を確立するために,各種の 耐震要素を組み込んだ単位木造軸組の振動台実験を行い, 動力学的特性と耐震性能を明らかにする。

2.試験体の概要

柱,桁と土台から構成される単純な基本軸組(高さ 2730mm×幅1820mm)を単位として,柱の断面寸法,接合 方法,面内の耐震要素をパラメータにして試験体を設定 した。試験体の加振は,損傷がない場合の振動特性を確 認する一次実験と,大変形領域における試験体の振動特 性・最大耐力や破壊性状を調べる二次実験の2段階に分 けて行った。加振波には日本建築センター模擬波(BCJ-L2)を使用した。

3. 実験結果と考察

1)破壊状況

・土塗小壁試験体:350Gal加振時(最大層間変形角1/13rad) に,土壁の隅角部が大きく崩れ,まぐさの部分で柱に大き なひび割れが入った。

・合板小壁試験体:300Gal加振時(最大層間変形角1/18rad) に合板下部が大きな破壊音と共に面外へはらみ出した。合 板と共にまぐさも柱から外れ,まぐさの部分で柱が1本折 損した。

・土壁試験体:200Gal加振時(最大層間変形角1/186rad) に,漆喰を塗っていない面で貫に沿ってひび割れが発生し た。350Galを入力した時(最大層間変形角1/33rad),漆喰 表面にX字型のひび割れが生じ,土壁の下部が土台から面 外に大きくはらみ出した。

2) 復元力特性

各加振での最大応答を示した点を結んだ包絡曲線をFig. 1 に示す。

・柱断面の影響:同じほぞ接合部を持つ試験体では,柱断 面が大きいほど大きな耐力が見られた。

・接合部の形状の影響:ほぞの長さを短くし,山形プレートで固定した短ほぞ架構よりも,ほぞの長さを横架材と同じ高さまで差し込み,込み栓を打ち込んで接合する長ほぞ 架構の方がより高い耐力を示すことが確認された。

・小壁の効果:小壁を配置した試験体はどちらも短ほぞ105 角試験体よりも耐力が上昇している。

・土壁の効果:土壁試験体では,最大耐力は1/50rad変形時に約16.5kNとなっている。最大耐力を記録した後も,比較的高い耐力を示しており,土壁が崩れて変形が進みながらも抵抗力を保持していることが分かる。

3)モーメント分布より見た抵抗メカニズム

試験体の柱頭と柱脚の接合部のモーメントの総和と,復

元力に試験体の高さを乗じて求めた層モーメントを比較す ると,軸組のみの試験体及び貫試験体では,接合部のモー メントの総和の方が層モーメントよりも大きく,その他の 試験体では,層モーメントの方が大きくなっていることが 分かった。

・柱材端のモーメント分布:小壁を配置した試験体では,柱 頭のモーメントは柱脚に比べて非常に大きな値を示した。 つまり,柱-横架材接合部の不均一なモーメント分布が, 柱の折損という脆性的な破壊を引き起こしたと思われる。 4)壁倍率の算出

建築基準法施行令第46条第4項表1の(八)に基づき, 日本住宅・木造技術センターで開発された性能評価法を適 用して,壁倍率を計算した。結果をTable 1に示す。筋か い試験体,合板小壁試験体において,現行の基準では実験 値より高めの値になっているのに対し,土壁の壁倍率は低

い値になっている。特 に土壁試験体におい て,現行の壁倍率との 開きが大きい。また, 現行の基準では全く評 価されていない貫や軸 組のみの試験体につい ても,仕様によっては ある程度の耐力が期待 できる。

Tabla	1	Multin	liana	of
I able	1.	munp	ners	OI.

bearing walls

	U	
試験体名	実験結果	現行
短ほぞ105角	0.1	0
短ほぞ150角	0.2	0
長ほぞ120角	0.2	0
長ほぞ150角	0.3	0
土塗小壁	0.5	0.1
合板小壁	0.3	0.5
貫	0.2	0
土壁	2.8	0.5
筋かい	1.5	2.0

単位木造フレームを用いた振動台実験による木造軸組の耐震性能評価 EVALUATION OF SEISMIC PERFORMANCE OF WOODEN FRAMES BY SHAKING TABLE TESTS

鈴木祥之¹,後藤正美²,山田真澄³

¹京都大学防災研究所, 教授 工博

Yoshiyuki Suzuki, Disaster Prevention Research Institute, Kyoto University, suzuki@zeisei.dpri.kyoto-u.ac.jp 2 金沢工業大学建築学科,助教授 博(工)

> Masami Gotou, Kanazawa Institute of Technology, gotou@neptune.kanazawa-it.ac.jp 3京都大学大学院工学研究科修士課程

Masumi Yamada, Graduate School of Eng., Kyoto University, yamada@zeisei.dpri.kyoto-u.ac.jp

SUMMARY

To evaluate the seismic performance of wooden buildings, shaking table tests of wooden unit frames installing various bearing elements were carried out. Four simple frame specimens with different column- sections and tenon-lengths were examined. The results show that the hysteresis loops of these frames are slip type. The frame with larger column-section had good seismic performance. Four frames with mud wall, mud hanging wall, plywood hanging wall and penetrating tie beams were also examined. As far as the frame with mud wall is concerned, the restoring force was large and the deformation performance was high, and the multiplier of bearing wall obtained here is greatly different from that of the Building Standard Low.

キーワード: 耐震性能, ほぞ仕口, 土壁, 壁倍率 Key words: Seismic performance, Mortise and tenon joint, Mud wall, Multiplier of bearing wall

1.研究の背景と目的

建築基準法の改正や住宅の品質確保の促進等に関する 法律の設立に伴い,現在の日本国内の一般的な構法を対 象として,木造住宅の耐震設計法や耐震性能評価法の提 案がなされている。しかし,各地に存在する多種多様の 地域独特の構法は,木材のばらつきや構法の複雑さ等に より構造解析が難しく,正当に耐震性能を評価すること には課題が多い。

本研究では,各地に存在する様々な構法の木造建物の 耐震性能評価法や耐震設計法を確立するために,各種の 耐震要素を組み込んだ単位木造軸組の振動台実験を行い ¹⁾,動力学的特性と耐震性能を明らかにする。

2.試験体の概要

柱,桁と土台から構成される単純な単位軸組(高さ 2730mm×幅1820mm)を基本として,柱の断面寸法,接 合方法,面内の耐震要素をパラメータにして試験体を設 定した。実験では,加振方向に2枚の壁面を併置し,水

Photo 1. View of testing

平構面に構造用合板24mmを使用し試験体が一体として 挙動するようにした。また,直交方向には倒壊及びねじ れを防止するために,ステンレスプレースを配置した。

試験体の種類と柱断面,ほぞ詳細をTable 1に,試験体 立面図をFig.1に示す。材種は込み栓が樫材,桁が米松 材,他はすべて杉材である。短ほぞ105角試験体と短ほぞ 150角試験体は,柱-横架材接合部を短ほぞ架構として, ほぞ長さは土台背の1/2,山形プレート留めとしている。 長ほぞ120角試験体と長ほぞ150角試験体は,土台にほぞ を通し,長ほぞ120角試験体は15mm角の角栓,長ほぞ150 角試験体は 16mmの丸栓を打ち込んで固定している。

小壁の試験体は試験体の上部1/3の位置にまぐさを配 置し,まぐさは2本の釘留めとした。土塗小壁試験体の 土壁は,木舞下地に割竹を用い,間渡り竹を入れて,間 に下地竹を縄で固定した。塗り厚は,荒壁裏返し36mm, 中塗り11mm × 2(両面),漆喰2mm(片面)で合計60mm である。荒壁を塗ってから実験開始までの期間は,約 2ヶ月であった。合板試験体は細間柱を3本配置し,9mm の構造用合板を試験体外側のみに貼った。接合ファス ナーにはN-50 釘を用い,打ち付け間隔は150mmである。

貫試験体と土壁試験体は,それぞれ短ほぞ試験体の軸 組に貫,貫+土壁を配置したものである。貫は断面15 ×105mmの杉材を3段に通し,柱の両側から楔を打ちこ み,釘2本でとめている。土壁は,土塗小壁試験体と同 様に製作した。

3. 実験方法

1)加振方法

本実験では,試験体の変形レベルや損傷状況に応じ て,実験を以下に示すように一次実験と二次実験の2段 階に分けて行った。加振波には日本建築センター模擬波 (BCJ-L2)を使用した。各実験段階の進行に合わせて, スイープサイン波を10~20Gal程度のレベルで入力し, 試験体の振動特性を把握した。

・一次実験:静的加力実験のデータなどから初期剛性を 仮定し,固有周期が約0.3秒となるように重りを設置 し,BCJ-L2を入力して,損傷がない場合の振動特性を 確認した。加振は50Gal刻みで,変形が非線形領域に入 るあたりまで段階的に実施した。

・二次実験:重りを増設して固有周期が1.0秒程度になるようにし,大変形領域における試験体の振動特性,最大耐力や破壊性状を調べた。加振は基本的に100Gal刻みで,試験体が破壊あるいは変形角1/10rad程度となるまで行った。

2) 積載重量の設定

積載重量は,一次実験と二次実験の目的に応じて,各 試験ごとに設定した。各試験体の積載重量をTable 1に 併記する。 3) 計測方法

計測に用いた加速度計と変位計の位置をFig. 2(a)に 示す。復元力は,桁中央で測定した加速度の値に,試験 体上部の質量を乗じ,1構面当りに換算した値を復元力 として用いている。層間変形角は,桁の端部中央と土台 端部中央に設置した変位計より層間変位を算出し,それ を試験体の高さ2730mmで除して層間変形角とした。柱-横架材接合部には,柱左端と右端に変位計を設置し,横 架材までの相対変位を計測した。計測された柱左端と右 端の変位を変位計計測幅で除することによって,柱-横 架材回転角を求めている。

displacement transducers

Fig.2. Allocation of measurement instruments

Table 1. List of specimens

試験休夕		ほご話 #百	対 新 面 (mm)	ほぞせ注(mm)	辟而耐力亜素	積載重量	
	武殿 仲 石				至面酌力安系	一次実験	二次実験
	短ほぞ105角	短ほぞ(山形プレート留め)	105 × 105	30 × 84 × 52.5	なし	0.2ton	0.5ton
其木勈纲	短ほぞ150角	短ほぞ(山形プレート留め)	150 × 150	50 × 130 × 75	なし	0.2ton	1.0ton
本中世紀	長ほぞ120角	長ほぞ(込み栓差し)	120 × 120	30 × 96 × 114	なし	0.2ton	1.0ton
	長ほぞ150角	長ほぞ(込み栓差し)	150 × 150	50 × 130 × 144	なし	0.5ton	1.5ton
小辟	土塗小壁	短ほぞ(山形プレート留め)	105 × 105	30 × 84 × 52.5	土塗小壁	0.5ton	1.0ton
小至	合板小壁	短ほぞ(山形プレート留め)	105 × 105	30 × 84 × 52.5	合板小壁	0.5ton	1.0ton
今 而 辟	貫	短ほぞ(山形プレート留め)	105 × 105	30 × 84 × 52.5	3段貫	0.2ton	0.7ton
土町至土壁	短ほぞ(山形プレート留め)	105 × 105	30 × 84 × 52.5	荒壁+中塗+片面漆喰	2.0ton	4.0ton	

柱脚及び柱頭には,柱端部から200mmの位置に歪ゲージを貼り付け歪を計測した。さらに,小壁のある試験体ではまぐさの両端にも歪ゲージを貼り,貫試験体と土壁 試験体では3段貫のすべての材端に歪ゲージを貼った。 貼付位置は柱表面より200mmである。土壁試験体の歪の 計測位置をFig.3(b)に示す。

計測方法は,柱あるいは貫の左端と右端に貼り付けた 2枚のゲージを,ブリッジボックスに1アクティブゲー ジ方を用いて接続し,部材の左端歪と右端歪の差を計測 した。この歪計測により得られたデータを,部材の断面 係数及びヤング係数を用いて曲げモーメントを算出し, これを材端モーメントとした。

4. 実験結果と考察

1)破壊状況

二次実験での破壊状況を以下に記述する。

・短ほぞ105角試験体:300Galまで加振した時,柱脚に取り付けてあった山形プレートが反り返りはじめた。しかし,抵抗要素がないため変形は進んだが,顕著な破壊は起こらなかった。

・短ほぞ150角試験体:外観からは破壊は確認できなかった。

・長ほぞ120角試験体:300Gal加振より,加振中に木材の 破壊音がするようになった。加振中,柱の梁からの抜けが 目立って大きくなった。実験終了後試験体を解体した時, すべてのほぞにひび割れ,割裂などの破壊が生じていたこ とが確認できた(Photo 2参照)。

・長ほぞ 150 角試験体:ほぞ,込み栓共に,ひび割れなどの破壊は生じなかった。

 ・土塗小壁試験体:300Gal 加振時に土壁と一体となってま ぐさが抜け,柱との間に隙間ができた(Photo 3参照)。
 350Gal 加振時には土壁の隅角部が大きく崩れ,まぐさの 部分で1本の柱に大きなひび割れが入った。

・合板小壁試験体:200Gal加振時にわずかに合板留め付け 釘が浮き始め,300Gal加振時に合板下部が大きな破壊音 と共に面外へはらみ出した(Photo4参照)。合板と共にま ぐさも柱から外れ,まぐさの部分で柱が1本折損した。

・貫試験体:250Gal加振時に,楔が緩んだため打ち直した。 試験体自体には顕著な破壊は見られなかった。

・土壁試験体:200Gal加振時に,漆喰を塗っていない面で 貫に沿ってひび割れが発生した。土壁は,軸組の中で面内 に回転するように動いていることが確認できた。350Gal を入力した時,漆喰表面にX字型のひび割れが生じ(Photo 5参照),土壁の下部が土台から面外に大きくはらみ出し た。それに伴って,山形プレートを留めていた釘が大きく 抜け出した。400Galでは土壁の剥落が激しくなり,柱脚 が土台にめり込むことにより土台にひび割れが発生した。

2) 復元力特性

各試験体の復元力特性をFig. 3(a)~(h)に示す。復元 力特性は,一次実験の200Gal加振,および二次実験の最

Photo 2. Break at a tenon

Photo 3. Separation of a lintel from a column

Photo 4. Slip of a lintel

Photo 5. Cracks on a mud wall

大加振のデータを描いている。ループの形状を見やすくす るために,各加振における微小振動のデータは省略した。 太線実線は,各加振での最大応答を示した点を結んだ包絡 曲線である。Fig.3(b)~(h)には比較のために,点線で短 ほぞ105角試験体の包絡曲線を描いている。

耐震要素のないFig. 3(a)~(d)に示される試験体では, ループの形状に共通点が見られる。微小加振時において, 紡錘形を描いていたループが,変形が進むにつれてスリッ プの特性が現れ,形状としては三角形に近くなっている。 復元力特性の特徴をパラメータの違いごとに比較して考察 する。

・柱断面の影響²⁾:同じほぞ接合部を持つ短ほぞ105角試 験体・短ほぞ150角試験体と,長ほぞ120角試験体・長ほ ぞ150角試験体を比較した。

短ほぞ105角試験体では,最大耐力が約1.2kNであるの に対し,短ほぞ150角試験体では最大耐力が3kNであった。

長ほぞ150角試験体の最大耐力は,長ほぞ120角試験体 の約2倍であった。長ほぞ120角試験体はほぞの割れに 伴って,耐力の急激な低下が起こり,最大層間変形角1/ 25rad辺りで最大耐力を記録しているのに対し,長ほぞ 150角試験体は1/25rad変形時でも安定したループを描い ており,十分な耐力を保持していることが推測される。

・接合部の形状の影響:柱径の等しい短ほぞ150角試験体 と,長ほぞ150角試験体を比較すると,最大耐力で約1.5 倍の違いが生じた。ほぞの長さを短くし,山形プレートで 固定した短ほぞ架構よりも,ほぞの長さを横架材と同じ高 さまで差し込み,込み栓を打ち込んで接合する長ほぞ架構 の方がより高い耐力を示すことが確認された。

・小壁の効果³⁾:小壁を配置した試験体はどちらも短ほぞ 105角試験体よりも耐力が上昇している。しかしループの 形状は大きく異なり,土塗小壁試験体が復元力特性のルー プに膨らみがあるのに対し,合板小壁試験体はループに膨 らみがなく,ほとんど塑性化しないまま破壊が生じてい る。また,どちらの試験体も加振中に柱の折損が起こって いるため,1つのループの中で急激に耐力が低下している ことが復元力特性に明確に表れている。 ・貫の効果:貫を配置しただけで,最大耐力は105短ほぞ 試験体の約2倍となっており,貫の効果も無視出来ないも のとなっている。貫試験体の復元力特性は,ループの形状 が軸組のみの試験体と極めて類似している。

・土壁の効果:土壁試験体では,最大耐力は1/50rad変形 時に約16.5kNとなっており,短ほぞ105角試験体の約14 倍であった。土壁試験体は,最大耐力を記録した後も,比 較的高い耐力を示しており,土壁が崩れて変形が進みなが らも抵抗力を保持していることが分かる。

3) 固有振動数の変化

固有振動数の変化には、各加振の振幅よりも累積した損 傷の影響が強く、経験した加振の回数と良い相関を示して いる。Fig. 4のグラフにおいては、BCJ-L2入力時の加速 度の伝達関数から求めた固有振動数を加振の順序を横軸に とって示している。

Fig. 4(左)は軸組のみの4試験体で比較したものであ る。短ほぞ105角試験体が他の3体に比べて小さい値を示 しているが,それ以外の試験体には明確な違いは確認でき ない。

Fig. 4(右)は各耐震要素ごとの比較である。際立っ て固有振動数が高いのは土壁試験体であり,一次実験最 初のスイープサイン波加振において,7.7Hzであった。 土壁試験体は,その後の一次実験において固有振動数が 7.7Hzから4.6Hzに下がったが,これは軸組と緊結して いた土壁が,加振することによって軸組と離れ,隙間が できたことによると思われる。二次実験終了後には,す べての試験体が1Hz 前後にまで低下している。

Fig. 5では,長ほぞ120角試験体において,加速度の 伝達関数から求めた固有振動数と,復元力特性の最大耐 力を示した点と原点を結んだ割線剛性から求めた固有振 動数を比較したものである。一次実験において,両者は 比較的一致しているが,損傷が激しく生じた二次実験後 半においては,復元力特性から求めた固有振動数の方が 高くなってきている。この傾向は,他の試験体において も確認できる。復元力特性において,最大耐力を示した 点では瞬間的に割線剛性が高くなっているが,小さな振 幅で揺れている時は,スリップが起こっているため,剛 性が上がらず振動数が低くなっている(Fig.6参照)。 伝達関数から求めた固有振動数は,加振波全体から求め ているため,低い値になっていると考えられる。

Fig. 6. Difference of stiffnesses according to the deformation

4) モーメント分布より見た抵抗メカニズム

至ゲージにより計測したデータを用いて,各試験体の柱 材端モーメントの分布を求めた。試験体の柱頭と柱脚のす べての接合部8箇所のモーメントの総和を求め,1構面当 りに換算した接合部モーメントと,復元力に試験体の高さ を乗じて求めた層モーメントを比較した。接合部モーメン トの,層モーメントに対する割合をTable 2に示す。その 結果,軸組のみの試験体及び貫試験体では,接合部モーメ ントの方が層モーメントよりも大きく,その他の試験体で は,層モーメントの方が大きくなっていることが分かっ た。特に土壁試験体では,接合部モーメントは,層モーメ ントのわずか7%であり,柱-横架材接合部以外の部分で 抵抗していることが分かる。

・柱材端のモーメント分布:柱頭と柱脚のモーメントの分 布を調べると,軸組のみの試験体及び貫試験体では,モー メントはほぼ一様であることが分かった。しかし小壁を配 置した試験体では,モーメントの分布に特徴が表れた。土 塗小壁試験体では, Fig. 8(a)に示すように柱頭のモーメ ントは柱脚に比べて非常に大きな値を示した。柱頭のモー メントは加振方向の影響を受け、特に柱が試験体外側に傾 斜する時,より大きなモーメントを示すことが分かった。 これは,柱が試験体外側に倒れる時には,まぐさ,土壁に よって柱が外側に押し出され、大きなモーメントがかかる のに対し,柱が内側に傾斜する時には壁体部分が軸組と離 れるためにモーメントがかかりにくいと考えられる(Fig. 10参照)。合板小壁試験体も,柱頭に大きなモーメントが かかっていることがFig. 8(b)から分かるが , 合板が柱と 剛接されているため、土塗小壁試験体に見られるような加 振方向の違いによるモーメントの大きさの違いは見られな い。このように,柱-横架材接合部の不均一なモーメント 分布が,柱の折損という脆性的な破壊を引き起こしたと思 われる。

・貫材端のモーメント分布:Fig. 9(a)に貫試験体の,Fig. 9(b)に土壁試験体の天井貫のモーメント - 層間変形角の関 係を示す。モーメントを測定した3本の貫のすべての材端 において同様な関係図が得られた。貫試験体の場合には, モーメント分布は通常の軸組のモーメント分布と同じ形に なっているのに対し,土壁がある場合には,モーメントの 正負が全く逆になっている。このことは,土壁の面内での 回転が貫の挙動を支配しているためと考えられる。加振中 の土壁の挙動を把握するために、慣性力を受けたときの貫 試験体と土壁試験体の柱脚部をPhoto 6,7に示す。貫試験 体では,柱の一端が土台と接触したまません断変形してい るのに対し,土壁試験体の柱脚は浮き上がり,ロッキング が生じている。すなわち, Fig. 11のように試験体が右回 り方向に傾斜した場合,土壁右下の部分が土台に接触して 抵抗し,土壁に慣性力がかかって左下の部分が浮き上が る。この浮き上がりによって貫の左端は上方向の引張力を 受け,右回りのモーメントがかると考えられる。

Table 2. Comparison of moments at joints of beams

with story moments

試験体名	接合部モーメント (kN [•] m)	層モーメント (kN・m)	接合部モーメント の層モーメントに 対する割合(%)
短ほぞ105角	6.98	3.29	212
短ほぞ150角	13.36	7.81	171
長ほぞ120角	6.30	4.05	156
長ほぞ150角	20.17	12.66	159
土塗小壁	5.02	7.99	63
合板小壁	5.61	11.90	47
貫	8.21	7.05	116
土壁	2.79	40.81	7

Fig. 8. Moment-rotation relationships at joints of beams

Fig. 10. Movements of mud wall and directions of force

Fig. 11. Rotation of mud wall

5) 壁倍率の算出

建築基準法施行令第46条第4項表1の(八)に基づき, 日本住宅・木造技術センターで開発された性能評価法を適 用して,壁倍率を計算した⁴⁾。壁倍率の算出には,降伏 耐力, 終局耐力に(0.2/構造特性係数)を乗じたもの,

最大荷重に2/3を乗じたもの, 真のせん断変形角1/ 150rad 時の耐力のうち,最小のものせん断耐力として用 いている。なお,この評価法では,同一の3体の試験体で 静的加力実験を行い,その平均値にばらつき係数を乗じて 評価することになっているが,本実験では振動台で加振し て実験しているため,試験体の耐力評価には各加振の最大 応答をプロットした抱絡曲線を代用した。試験体数は1体 のみなので,ばらつき係数は乗じていない。

Table 3 に算出した壁倍率を示す。筋かい試験体の実験 については,本論では検討の対象としていないが,比較の ために併記する。筋かい試験体の仕様は,短ほぞ105角試 験体の軸組に105角の間柱を入れ,断面45×105mmの筋 かいを山形に配置し,端部を筋かいプレートで固定したも のである。評価の対象となったせん断耐力は,土壁試験体 と筋かい試験体を除き,真のせん断変形角1/150rad変形 時の耐力であった。土壁試験体と筋かい試験体では,初期 剛性が高かったため,降伏耐力が壁倍率を決定した。

壁倍率の評価方法が異なるため,単純に比較はできない が,筋かい試験体,合板小壁試験体において,現行の基準 では実験値より高めの値になっているのに対し,土壁の壁 倍率は低い値になっている。特に土壁試験体において,現 行の壁倍率との開きが大きい。また,現行の基準では全く 評価されていない貫や軸組のみの試験体についても,仕様 によってはある程度の耐力が期待できる。これらの差異に ついては,見直しの検討が必要だと思われる。

5. まとめ

木造軸組の耐震性能評価のために行った単位木造フレー ムを用いた振動台実験から得られた結果は、以下のように 要約される。

・軸組のみの試験体の場合は,柱断面が大きく,ほぞ長さが長い方が強い耐力を示した。耐震性の向上のために,大きな柱断面や長ほぞが有効であることが確認された。

・小壁を配置した試験体では,不均一なモーメント分布の ために,柱の一部に過大なモーメントが加わり,脆性的な 破壊を引き起こした。土塗小壁と合板小壁の試験体は類似 した耐力 - 変形関係を示したが,復元力特性の履歴ループ を見ると,合板小壁はほとんど塑性化しないまま柱の破壊 が生じていた。

・土壁試験体は,貫に沿ってひび割れが生じた後も土壁隅 角部が軸組に接触して抵抗し,最終的には土壁がせん断抵 抗要素となってX字型のひび割れが生じた。最大耐力は 16.5kNと大きく、変形性能も大きく、木造軸組の耐震要 素として十分な性能を有している。また、実験結果より算

Photo 6. Separation of a column from a sill in the mud wall specimen

Photo 7. Separation of a column from a sill in the penetrating tie beam specimen

Table 3.	Multiplier	s of	bearing	walls
----------	------------	------	---------	-------

試験体名	実験結果より 算出した壁倍率	現行の壁倍率
短ほぞ105角	0.1	0
短ほぞ150角	0.2	0
長ほぞ120角	0.2	0
長ほぞ150角	0.3	0
土塗小壁	0.5	0.1
合板小壁	0.3	0.5
貫	0.2	0
土壁	2.8	0.5
筋かい	1.5	2.0

出した土壁の壁倍率は,建築基準法で定められた壁倍率よ りも相当大きく、土壁の壁倍率の見直しが必要である。

謝辞

本実験を行うに当たって,京都大学防災研究所技官市川 信夫氏,京都大学大学院清水秀丸氏,前野将輝氏並びに金 沢工業大学卒論生斉藤美保氏,南谷恵氏,原知子氏,小栗 一哉氏に多大な協力を受けました。ここに,深く感謝の意 を表します。

参考文献

1)後藤正美,山田真澄,鈴木祥之:単位木造フレームを用 いた動的・静的実験による木造軸組の耐震性能評価(その 1:実験概要),日本建築学会大会学術講演梗概集,2002掲 載予定

2) 杉山亮太,山田真澄,後藤正美,鈴木祥之:単位木造 フレームを用いた動的・静的実験による木造軸組の耐震性 能評価(その2:短・長ほぞによる木造軸組の耐震性能),日本建築学会大会学術講演梗概集,2002 掲載予定

3)山田真澄,後藤正美,鈴木祥之:単位木造フレームを 用いた動的・静的実験による木造軸組の耐震性能評価(そ の3:小壁、全面壁による木造軸組の耐震性能),日本建築

学会大会学術講演梗概集,2002掲載予定 4)日本建築学会「木構造と木造文化の再構築」特別研究 委員会,日本建築学会近畿支部:木構造と木造文化の再構

安貝会,日本建築学会近蔵文部:木桶造ど木道文化の再4 築,pp126-151,2001.