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Abstract

A novel method of Bayesian learning with automatic relevance determination prior

is presented that provides a powerful approach to problems of classification based

on data features, for example, classifying soil liquefaction potential based on soil

and seismic shaking parameters, automatically classifying the damage states of a

structure after severe loading based on features of its dynamic response, and real-

time classification of earthquakes based on seismic signals. After introduction of the

theory, the method is illustrated by applying it to an earthquake record dataset from

nine earthquakes to build an efficient real-time algorithm for near-source versus far-

source classification of incoming seismic ground motion signals. This classification

is needed in the development of early warning systems for large earthquakes. It

is shown that the proposed methodology is promising since it provides a classifier

with higher correct classification rates and better generalization performance than a

previous Bayesian learning method with a fixed prior distribution that was applied

to the same classification problem.
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Introduction

Classification is a sub-topic of machine learning which can be defined as ‘the

act of taking in raw data and taking an action based on the category of the

data’ (Duda et al. 2000). By using a given training dataset, a separating

boundary is identified that separates different-class data in the feature space,

then the category to which new data belongs is decided by using that sepa-

rating boundary.

This classification is performed in three phases:

• Phase I (Feature Extraction Phase) : This phase distills a small number of

features from a large set of data that are thought to characterize each class

of interest in the data.

• Phase II (Training Phase) : This phase identifies a separating boundary

based on extracted features that are most relevant to the data classification,

usually using some form of regularization.

• Phase III (Prediction Phase) : In this phase, a prediction is made using the

separating boundary from the previous phase to decide to which class new

data belongs.

Bayesian methods for classification problems have the advantage that they
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make probabilistic predictions (rather than giving only a possibly misleading

yes/no answer) for the class that corresponds to a given feature vector (Bishop

2006). These predictions are based on a rigorous Bayesian learning procedure

that rests on the axioms of probability. The essential ingredients are a set of

predictive probability models involving a parameterized separating boundary

function and a probability model (the prior distribution) over this set. The

prior can be pragmatically chosen by the user to regularize the ill-conditioned

problem of identifying a boundary that separates the classes in the feature

vector space. In the absence of such regularization, the training phase will be

usually lead to “over-fitting” of the data, so that generalization beyond the

training data in the prediction phase will perform poorly.

In this paper, the novel method of Bayesian learning with automatic rele-

vance determination (ARD) prior is presented and illustrated for an inter-

esting classification problem in earthquake early warning systems (Yamada

et al. 2007) because of its exceptional regularization ability (Mackay 1994;

Oh and Beck 2006; Tipping 2004). The presented Bayesian approach is useful

for other problems of data-based classification in earthquake engineering and

structural health monitoring, such as liquefaction for sandy soil sites based on

soil properties and ground shaking intensity, classifying damage states based

on sensor data (Oh and Beck 2006), and so on. In the application presented

here, the Bayesian learning method with ARD prior provides an algorithm for

probabilistic predictions of whether the seismic ground motion signal that is

transmitted from a seismic sensor network corresponds to near-source or far-

source ground motion with respect to the causative fault. This information is

important for an early warning system when it is automatically estimating the

location and magnitude of the earthquake in real time (Yamada et al. 2007).
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Since an earthquake is a sudden event that comes without much warning, there

is increasing research interest in automated seismic early warning systems that

can take rapid actions to mitigate damage and loss before the onset of the

damaging ground shaking at a facility (Allen and Kanamori 2003; Cua 2005;

Grasso and Beck 2007). Seismic early warning is based on the principle that an

automated and reliable system may allow time for taking mitigation measures

because the speed of the most damaging S-waves (about 3.5 km/s) is slower

than that of electrically transmitted signals from the seismic network sensors

(about 300, 000 km/s) that detect the onset of the event.

A recently-developed method for an early warning system, called the Vir-

tual Seismologist (VS) method (Cua 2005) can estimate the location of the

epicenter and the magnitude within a few seconds after the detection of the

P-waves near the causative fault. This VS method, however, currently works

for moderate earthquakes of magnitude less than about 6.5 because it assumes

a point-source model for the rupture (Cua 2005). To construct a seismic early

warning system dealing with larger earthquakes, knowledge of the fault ge-

ometry is essential and an important ingredient in establishing the extent of

the rupturing fault is to be able to estimate whether the station is close to

the fault (near-source) or at some distance (far-source) based on the waveform

data available at the given station (Yamada et al. 2007).

The earthquake dataset and the extracted features are described in the next

section and then the training and predicting phase with the Bayesian learn-

ing procedure is described. The results obtained by the proposed method for

near-source (NS) versus far-source (FS) classification are presented and com-

pared with those from a recent related study (Yamada et al. 2007) with the

conclusions followed at the end.
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Feature Extraction for Training Data

We chose the dataset used previously by Yamada et al. (2007). It consists

of 695 strong-motion records from 9 earthquakes of magnitude greater than

6.0: Imperial Valley (1979), Loma Prieta (1989), Landers (1992), Northridge

(1994), Hyogoken-Nanbu (1995), Izmit (1999), Chi-Chi (1999), Denali (2002)

and Niigataken-Chuetsu(2004). Records are categorized as near-source (NS)

if the corresponding station is less than 10 km from the fault rupture and far-

source (FS) otherwise. Only stations with fault distances less than 200 km are

included since otherwise the ground motion amplitudes are small, resulting

in a low signal-to-noise ratio. The precise number of NS and FS records for

each earthquake is listed in Table 1. For each baseline-corrected time history

in the dataset, the values of peak jerk, acceleration, velocity and displacement

in the horizontal and vertical directions were extracted by taking numerical

derivatives or integrals when necessary (Yamada et al. 2007). We note that

jerk is defined as the rate of acceleration change and so it is computed as the

derivative of acceleration with respect to time. Motions with higher-frequency

content such as acceleration and jerk are more informative about the fault

distance, since the amplitudes of these motions decay more rapidly than those

of lower-frequency motions such as displacements and velocities (Hanks and

McGuire 1981). For the two horizontal components of each record, the square

root of the sum of squares of the peak quantities were used. Since the peak

amplitudes are utilized for classification, the peak of the S-wave needs to have

arrived at a given station before predictions with the Bayesian classifier can

be made.

This data processing leads to the eight extracted features listed in Table 2 for
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each of the 695 records. These features are combined into a vector x ∈ R8:

x = [ log10 Hj, log10 Zj, log10 Ha, log10 Za, log10 Hv, log10 Zv,

log10 Hd, log10 Zd]
T

where H and Z mean the peak horizontal and vertical components and j, a,

v and d stand for jerk, acceleration, velocity and displacement, respectively.

The dataset of feature vectors is the same as that used in Yamada et al. (2007)

where a Bayesian classification scheme was applied that used a fixed prior.

Bayesian Learning and Prediction

Let DN = {(xn, yn) : n = 1, ..., N} = (X, y) denote the data with features

(predictor variables) xn ∈ Rm and labels yn ∈ {0, 1} (yn = 0 for far-source

data, yn = 1 for near-source data, N = 695 and m = 8 in our application).

Suppose that the function characterizing the separating boundary between

the two classes is taken as a linear combination of features x = [x1, ..., xm]T

with unknown coefficients θ = [θ0, θ1, ..., θm]T ∈ Rm+1:

f(x|θ) =
m∑

j=1

θjxj + θ0 (1)

The separating boundary function f(x|θ) is also called the (linear) discrimi-

nant function. We note in passing that the method presented here also works

if the xj in (1) are replaced by nonlinear functions gj(x). For a known param-

eter vector θ, the separating boundary between the different classes (NS and

FS in our application) is defined as f(x|θ) = 0 and probabilistic predictions of

the class label y ∈ {0, 1} corresponding to extracted features x will be based

on the probability model:
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P (y|x, θ) =


φ(f(x|θ)), if y = 1

1− φ(f(x|θ)), if y = 0

= φ(f(x|θ))y{1− φ(f(x|θ))}1−y (2)

where φ(·) ∈ [0, 1] is the monotonically increasing sigmoid function on R

defined by φ(x) = 1/(1 + e−x) so limx→∞ φ(x) = 1, limx→−∞ φ(x) = 0 and

φ(x) +φ(−x) = 1 (See Figure 1). Thus, when f(x|θ) is large and positive, the

probability is near 1 that x corresponds to an instance of the y = 1 class, while

when f(x|θ) is negative with large magnitude, x corresponds to an instance

of the y = 0 class with probability near 1. Note that the boundary f(x|θ) = 0

corresponds to a probability of 0.5 for both classes and it is invarient to a

scaling of f ; however, this scaling is important because it controls how rapidly

the probability of a class approaches its asymptotic values of 0 and 1 as the

feature vector x is moved away from the boundary.

Bayesian Learning

Since (1) is just a model for the separating boundary, there are no true values

of θ to be “estimated” but we can learn about how plausible its various values

are by Bayesian updating using the data DN .

From Bayes’ Theorem:

p(θ|DN , α) =
P (DN |θ) p(θ|α)

P (DN |α)
(3)

where p(θ|DN , α), P (DN |θ), p(θ|α) and P (DN |α) represent the posterior, like-

lihood, prior and evidence, respectively. The hyperparameters α define the
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ARD prior as explained shortly.

The likelihood P (DN |θ) measures how well the predictive probability model

defined by θ predicts the actual data:

P (DN |θ) =
N∏

n=1

P (yn|xn, θ)

=
N∏

n=1

φ(f(xn|θ))yn{1− φ(f(xn|θ))}1−yn (4)

The prior p(θ|α) provides a means of regularizing the learning process. A

novel feature of this work is the introduction of the ARD prior (Mackay 1994;

Tipping 2004), which is simply a Gaussian PDF with mean 0 and covariance

matrix A(α)−1 = diag{α−1
0 , α−1

1 , ..., α−1
m }:

p(θ|α) = (2π)−
m+1

2 |A(α)|
1
2 exp

{
− 1

2
θTA(α)θ

}
(5)

The previous study by Yamada et al. (2007) adopted a fixed and non-informative

prior that assigned the same value for all αi, i.e., αi = 100−2, i = 0, ..,m, while

the ARD prior uses an independent αi for each parameter θi and these inde-

pendent αis are estimated during the learning process. The ARD prior com-

bined with Bayesian model class selection plays an important role in selecting

the significant features by utilizing only a small number of relevant features

and automatically pruning the remaining features, instead of considering all

possible model classes, one after another, as in Yamada et al. (2007).

The hyperparameter α ∈ Rm+1
+ can be viewed as defining a model class M(α)

consisting of the set of predictive probability models {P (y|x, θ) : θ ∈ Rm+1}

along with the above prior PDF p(θ|α) over this set. We will then use model

class selection based on the evidence P (DN |α) for M(α) to select the most
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probable model class M(α̂) based on data DN (Beck and Yuen 2004; Mackay

1992). It was shown by Tipping (2004) that the ARD prior suppresses ill-

conditioning by discouraging strong correlations between terms in (1) that are

not supported by the data; in fact, it may happen that some α̂j →∞ during

the optimization to findM(α̂) which completely suppresses the corresponding

terms in (1) (i.e., θj = 0 since for M(α̂), θj has a Gaussian prior with zero

mean and vanishing variance).

The next step is to construct a Gaussian approximation of the posterior

p(θ|DN , α) using Laplace’s asymptotic approximation (Beck and Katafygiotis

1998; Mackay 1992). This is achieved by making a quadratic approximation

of the log-posterior around the most probable value, θ̂, given by maximization

of the posterior PDF. This produces a Gaussian distribution with mean θ̂ and

covariance matrix Σ̂ which is the inverse of the negative of the Hessian matrix

of the log-posterior.

The detailed procedure for the Laplace approximation is as follows (Oh 2007):

(1) For a given value of α, the log-posterior from (3), (4) and (5) is (ignoring

irrelevant additive terms that depend only on α):

ln[p(θ|DN , α)] =
N∑

n=1

ln[P (yn|θ, xn)] + ln[p(θ|α)]

=
N∑

n=1

[
yn · ln φn(θ) + (1− yn) · ln{1− φn(θ)}

]
−1

2
θTA(α)θ (6)

where A(α) = diag{α0, α1, ..., αN} and φn(θ) = φ(f(xn|θ)). By using an iter-

ative procedure based on a second-order Newton method (or any other opti-

mization method), the most probable values θ̂(α) are estimated by maximizing
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ln[p(θ|DN , α)].

(2) The inverse covariance matrix is Σ̂−1(α) = −∇θ∇θ ln p(θ|DN , α) evaluated

at θ̂(α) and the resulting Gaussian approximation of the posterior distribution

is:

p(θ|DN , α) ∼= (2π)−(m+1)/2|Σ̂|−1/2 exp
{
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

}
(7)

where

Σ̂(α) = (ΦTBΦ + A)−1 ∈ R(m+1)×(m+1) : covariance matrix for θ, given α

θ̂(α) = Σ̂ΦTBŷ(α) : the most probable value of parameter θ, given α

ŷ(α) = Φθ̂ + B−1(y − φ(Φθ̂)) ∈ RN

B(α) = diag{β1, ..., βN} ∈ RN×N with βn(α) = φn(θ̂)(1− φn(θ̂))

Φ = [τ 1, ..., τN ]T ∈ RN×(m+1)

τn = τ(xn) = [1, xT
n ]T ∈ Rm+1.

The posterior in (7) contains all that is known about the parameters θ based

on the assumed model class M(α) and the data DN .

Bayesian Model Class Selection when using ARD Prior

In the next step, Bayesian model class selection is used to select the most prob-

able hyperparameter α̂ ∈ Rm+1
+ . The most probable model class M(α̂) based

on data DN is given by finding α̂ that maximizes the probability p(α|DN)dα ∝

P (DN |α)p(α)dα for model class M(α). If a uniform prior on α is considered,

then it is equivalent to the maximization of the evidence P (DN |α), which is

equivalent to the maximization of ln P (DN |α) given by:

L(α) = ln P (DN |α)
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= ln

∞∫
−∞

P (DN , θ|α)dθ

= ln

∞∫
−∞

P (DN |θ)p(θ|α)dθ

∼=−
1

2

[
N ln 2π + ln |B−1 + ΦA−1ΦT | + yT (B−1 + ΦA−1ΦT )−1y

]
=−1

2

[
N ln 2π + ln |C|+ yTC−1y

]
(8)

where Laplace’s asymptotic approximation is used on the integral in (8) ex-

panding about θ̂(α), the maximum of the integrand, C = B−1 +ΦA−1ΦT and

A(α), B(α) and Φ are defined as before (see Faul and Tipping 2002).

The maximization of L(α) is performed using an iterative procedure as follows.

L(α) can be re-written by isolating the terms containing αi:

L(α) =−1

2

[
N ln 2π + ln |C−i|+ yTC−1

−i y − ln αi + ln(αi + τT
i C−1

−i τ i)

−
(τT

i C−1
−i y)2

αi + τT
i C−1

−i τ i

]
=L(α−i) +

1

2

[
ln αi − ln(αi + τT

i C−1
−i τ i) +

(τT
i C−1

−i y)2

αi + τT
i C−1

−i τ i

]
(9)

where C−i is the covariance matrix C with the components of τ i removed and

so C−i does not depend on αi, only on the other components of α. By setting

the derivative of (9) with respect to αi to zero, the value that maximizes L(α)

is found to be

α̂i =


∞, if Q2

i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(10)

where Qi = τT
i C−1

−i y and Si = τT
i C−1

−i τ i (Faul and Tipping 2002).

Starting with an initial estimate of α̂, α̂i is iteratively calculated from (10) for
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each i = 0, ...,m, always utilizing the latest estimates for the αj to evaluate

C(α), and this procedure is continued until it converges to α̂. In this process,

some of the αi may become infinite, resulting in a pruning of the corresponding

components of τ i since α̂i → ∞ ⇒ θ̂i → 0 and Σ̂ii → 0, so θi → 0 from (7).

Thus, only the components that have α̂i finite are used in determining the

separating boundary, so that the maximization of the evidence with respect

to α automatically determines which terms in f(x|θ) in (1) are relevant for

classification.

Prediction Phase

Based on the results from the previous subsection, prediction is performed as

follows. Let ỹ denote the unknown label for new feature, x̃, then the desired

probability is given by:

P (ỹ|x̃,DN) =
∫

P (ỹ, θ, α|x̃,DN)dθdα

=
∫

P (ỹ|x̃,DN , θ)p(θ|DN , α)p(α|DN)dθdα

Using Laplace’s approximation twice:

P (ỹ|x̃,DN)∼=
∫

P (ỹ|x̃, θ)p(θ|DN , α̂)dθ ∼= P (ỹ|x̃, θ̂(α̂)) (11)

where θ̂, α̂ are the most probable values for θ, α based on data DN determined

as in (7) and (10), respectively, and P (ỹ|x̃, θ̂(α̂)) is given by (2). Notice that the

predictive probability in (11) is controlled by the optimal boundary function

f(x̃|θ̂(α̂)) given by (1).
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Near-field versus Far-field Classification Results

Function for Separating Boundary

In a previous study that used a fixed prior (instead of the ARD prior), the

three-parameter model given in (12) was found to give the optimal separat-

ing boundary function based on the earthquake dataset described in Table 1

(Yamada et al. 2007):

M1 : f(x|θ̂) = 6.046 log10 Za + 7.885 log10 Hv − 27.091 (12)

This corresponds to a model class, denoted M1 here, that was selected by

finding the most probable model class among 255 (=28− 1) models consisting

of all possible combinations of the 8 features in Table 2 and using a fixed

Gaussian prior p(θ|M) for each model class M. The misclassification rates

for M1 are 22.00% and 2.02% for the NS and FS data, respectively.

Since M1 was estimated by using a constant standard deviation of 100 (=

α
−1/2
i ) for the Gaussian prior for each θi, the proposed method of Bayesian

learning with the ARD prior is first applied to a model class with the same

features as in (12) but using an independent variance αi for each θi (i = 0, 1, 2)

in the prior. The procedure described in the previous section is applied to the

earthquake dataset and the optimal boundary function for this model class

M2 is given in (13): the corresponding misclassification rates are 23.00% and

2.02% for NS and FS data, respectively. The corresponding prior variances are

given later.

M2 : f(x|θ̂) = 6.129 log10 Za + 7.484 log10 Hv − 26.588 (13)
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Based on the misclassification rates, it could be concluded that the difference

in performance between the two three-parameter models (12) and (13) is neg-

ligible. However, it is shown later that M1 is much less probable that M2

based on the data.

Finally, the proposed methodology of Bayesian learning with the ARD prior

is applied to a model containing all 8 features in Table 2. It produces a five-

parameter model class M3 whose optimal separating boundary function is:

M3 : f(x|θ̂) = 2.055 log10 Hj + 5.350 log10 Za + 4.630 log10 Hv

+ 1.972 log10 Hd − 30.982 (14)

Note that for M2, the Bayesian learning algorithm is restricted to have no

more than log10 Za and log10 Hv , the features that are used for M1, while M3

selects 4 features from a potential of 8 by automatically pruning the other

features. The corresponding misclassification rates for M3 are 18.00% and

1.85% for NS and FS data, respectively, significantly smaller than those for

M1 and M2.

The coefficients for the optimal separating boundaries, the prior variances and

the corresponding classification results for each model class are summarized in

Tables 3, 4 and 5, respectively. The performance of these three model classes

are next examined by leave-one-out cross-validation and then by calculating

their evidence based on the earthquake data DN .

Leave-One-Out Cross-Validation

Table 5 shows the classification results for models M1, M2 and M3 using all

695 records in the earthquake dataset, both for training and predicting the
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labels. As shown in this table, M3 outperforms the two other models on the

basis of smaller misclassification rates. For another check on the performance

of these three models for predicting the class, leave-one-out cross-validation

(LOOCV) is performed.

LOOCV, as the name implies, takes one data point at a time from the whole

dataset and then a prediction is made based on the optimal separating bound-

ary determined from the remaining data. This procedure is repeated until each

data point has been compared with the corresponding prediction (taken here

as the class with the higher predictive probability, that is, the class with proba-

bility exceeding 0.5). Actually, LOOCV is equivalent to K-fold cross-validation

where K(= 695 here) is equal to the number of data in the original dataset.

Note that LOOCV is commonly used in Tikhonov regularization to select

the regularizing parameter, but this is handled automatically in the Bayesian

approach presented here.

The results of LOOCV for each model class are presented in Table 6. Based

on the misclassification rate, which is the ratio of the number of misclassified

data to the total number of data, classification model M3 shows a better

performance.

Posterior Probability of Each Model Class

In this section the posterior probability of each model class in the set M =

{M1,M2,M3} is computed based on the dataset DN of 695 records by using

Bayes’ Theorem:
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P (Mi|DN ,M) =
P (DN |Mi)P (Mi|M)

P (DN |M)

=
P (DN |Mi)P (Mi|M)∑I

i=1 P (DN |Mi)P (Mi|M)
(15)

where P (DN |Mi) is the evidence for Mi, P (Mi|M) is the prior reflecting the

initial choice of the probability of each model class in setM and the denomina-

tor P (DN |M) is a normalizing constant. Assigning equal prior probability to

each model class, the posterior probability of each model class is proportional

to its evidence

P (Mi|DN ,M) ∝ P (DN |Mi) (16)

Using the Theorem of Total Probability, the evidence is calculated from:

P (DN |Mi) =
∫

P (DN |θi,Mi)p(θi|Mi)dθi (17)

This is the average value of the likelihood weighted by the corresponding prior

probability over all possible values of the parameters θi. For a large number

of data, an asymptotic approximation can be applied to the integral in (17)

(Beck and Yuen 2004):

P (DN |Mi) ∼= P (DN |θ̂i,Mi)
(2π)Ni/2p(θ̂i|Mi)√

|H(θ̂i)|
(18)

where θ̂i is the most probable value of θi and Ni is the number of parameters

in model class Mi. The first factor in (18) is the likelihood and the remaining

factors together are the Ockham factor. This Ockham factor penalizes more

complex models. The Hessian matrix H(θi) in (18) is given by the same ex-

pression as for Σ̂−1(α) after (7) where each variance α−1
i is given in Table 4.

The posterior probabilities for each ofM1,M2 andM3 are presented in Table
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7, which shows that M3 is much more probable than M1 and M2 based on

the dataset DN .

There is a refined information - theoretic interpretation (Beck and Yuen 2004;

Muto and Beck 2008) of the log evidence that shows that it consists of the

difference between a datafit term (the posterior mean of the log likelihood

function for the model class) and a relative entropy term (Shannon 1948)

which quantifies the amount of information extracted from the data by the

model class. It is the latter term that prevents over-fitting to the data and

which leads to an automatic Principle of Model Parsimony (Beck and Yuen

2004) when Bayesian updating is performed over a set of model classes, as done

here. This information - theoretic interpretation is evident from the asymp-

totic approximation (18) for large N which shows that the log evidence is

approximated by the sum of the log likelihood of the most probable model in

the model class and the log Ockham factor, which is an asymptotic approxi-

mation for the negative of the relative entropy. This is how it was originally

discovered (Beck and Yuen 2004) but more recently it has been proved for

the general case (Muto and Beck 2008).

Effect of Prior

As we stated, the likelihood in (18) calculated for a more complex model is

usually larger than that for a simpler one, since a more complex model gives a

better fit to the data (e.g. see Table 7). Therefore, if a model is selected that

maximizes the likelihood alone, it tends to prefer the more complex model

and may lead to an over-fitting problem. In the Bayesian learning method,

this problem is inherently avoided by employing a prior distribution where
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the standard deviation of the prior controls the trade-off between the datafit

error and model complexity (Bishop 2006). This trade-off occurs because the

posterior probability of a model class depends on the evidence for the model

class, which can be expressed as the product of a datafit factor and an Ockham

factor, as explained in the previous sub-section.

It is interesting that in the application here M1 is a ‘simpler’ model than M3

(it has fewer parameters) and yet Table 7 shows that its Ockham factor is much

smaller than that of M3, so the ‘simpler’ model is penalized more than the

more complex one. This is a caution that one cannot simply count the number

of uncertain parameters Ni in a model class Mi to judge its complexity. For

the same reason, one must be cautious in using simple model selection criteria

such as AIC (Akaike 1974) and BIC (Schwarz 1978), since they replace the

Ockham factor in (18) with exp(−Ni) and exp(−1
2
Ni ln N), respectively.

The reason for the lower Ockham factor for M1 is that it has much larger

prior standard deviations than M3, so the change in entropy from the very

broad prior PDF of M1 to its narrow posterior PDF is very large, and as a

consequence the relative entropy term in the information-theoretic interpre-

tation mentioned in the previous sub-section is larger for M1 than for M3.

This interpretation shows that the correct measure of ‘complexity’ for a model

class is the amount of information that it extracts from the data, so in this

sense, M1 is actually more complex than M3.
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Concluding Remarks

A novel method of Bayesian learning with the automatic relevance determi-

nation (ARD) prior is presented and applied to classify earthquake ground

motion data into near-source and far-source. The extracted features corre-

spond to the log10 values of peak jerk, acceleration, velocity and displacement

in the horizontal and vertical directions and these are used with Bayesian

learning to establish a separating boundary in the feature space. The ARD

prior plays an important role by promoting sparsity when selecting the impor-

tant features (i.e. by utilizing only a small number of relevant features after

automatically pruning the remaining features).

The discussion in the previous sub-section and the results presented for the

near-source/far-source classification problem demonstrate that broad prior

PDFs should be used with caution when defining a model class. An important

advantage of using the ARD prior is that model class selection automatically

chooses an appropriate prior that does not overly penalize complexity; it pro-

vides a balance between the datafit of the model class and its complexity in

terms of the amount of information that it extracts from the data.

The selected most probable separating boundary for classification of seismic

signals into near-source and far-source is:

f(xi|θ̂) = 2.055 log10 Hj + 5.350 log10 Za + 4.630 log10 Hv

+ 1.972 log10 Hd − 30.982 (19)

where Hj, Za, Hv and Hd are the horizontal jerk, vertical acceleration, and hor-

izontal velocity and displacement, respectively, of the ground motion record.

Based on (19), the probability for new data with features x̃ to be classified as
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near-source (ỹ = 1) or far-source (ỹ = 0) is:

P (ỹ = 1|x̃, θ̂) =
1

1 + exp(−f(x̃|θ̂))
(20)

P (ỹ = 0|x̃, θ̂) = 1− P (ỹ = 1|x̃, θ̂) (21)

The proposed method is readily applied to real-time analysis of recorded seis-

mic ground motions for near-source and far-source classification since the only

calculations involved are those implied by (19) to (21).

In view of the results so far achieved, it can be concluded that it is beneficial

to use the proposed Bayesian learning with the ARD prior because it leads to:

• higher correct classification rates (equivalent to a lower misclassification

rate) (see Table 5)

• better generalization performance as demonstrated by the leave-one-out

cross-validation results (see Table 6)

• the most probable model class based on the calculated posterior probability

(see Table 7)

Additional studies are underway in performance-based earthquake engineering

in order to apply the method to develop component fragility functions for

multiple engineering demand parameters and multiple damage states.
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Fig.1. Shape of Sigmoid Function.
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Table 1. Number of Near-source and Far-source Records in Earthquake Dataset

Used for Classification (from Yamada et al. 2007).

Earthquake Mw
a NS FS Total Fault Modelb

Imperial Valley (1979) 6.5 14 20 34 Hartzell and Heaton (1983)

Loma Prieta (1989) 6.9 8 39 47 Wald et al. (1991)

Landers (1992) 7.3 1 112 113 Wald and Heaton (1994)

Northridge (1994) 6.6 17 138 155 Wald et al. (1996)

Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald (1996)

Izmit (1999) 7.6 4 13 17 Sekiguchi and Iwata (2002)

Chi-Chi (1999) 7.6 42 172 214 Ji et al. (2003)

Denali (2002) 7.8 1 29 30 Tsuboi et al. (2003)

Niigataken-Chuetsu (2004) 6.6 9 58 67 Honda et al. (2005)

Total 100 595 695

a Moment magnitude (Mw) is cited from Havard CMT solution.

b To classify near-source and far-source station, listed fault models are utilized.
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Table 2. Eight Extracted Features (from Yamada et al. 2007).

Ground Motion Feature Unit

Horizontal Peak Ground Jerk (Hj) (cm/s3)

Vertical Peak Ground Jerk (Zj) (cm/s3)

Horizontal Peak Ground Acceleration (Ha) (cm/s2)

Vertical Peak Ground Acceleration (Za) (cm/s2)

Horizontal Peak Ground Velocity (Hv) (cm/s)

Vertical Peak Ground Velocity (Zv) (cm/s)

Horizontal Peak Ground Displacement (Hd) (cm)

Vertical Peak Ground Displacement (Zd) (cm)
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Table 3. Coefficients for Optimal Separating Boundary Function for Each

Model Class.

M Ni
a 1 Hj Zj Ha Za Hv Zv Hd Zd

M1 3 -27.091 -b - - 6.046 7.885 - - -

M2 3 -26.588 - - - 6.129 7.484 - - -

M3 5 -30.982 2.055 0c 0 5.350 4.623 0 1.972 0

a Ni is the number of parameters used for each model.

b ‘-’ means the corresponding parameters are not considered for each model.

c ‘0’ means the corresponding parameters are automatically pruned during

training.

27



Table 4. Prior Covariance Matrix for Each Model Class.

M Prior Covariance Matrix

M1 diaga(1002, 1002, 1002)

M2 diag(26.762, 6.192, 7.572)

M3 diag(31.232, 2.252, 5.482, 4.972, 2.202)

a ‘diag’ means diagonal matrix with the diagonal elements following.
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Table 5. Classification Results for Earthquake Database Using Three Differ-

ent Model Classes.

Actual Class
Predicted Class

Total Observations

Near-source Far-source

M1

Near-source 78(78.00%) 22(22.00%) 100

Far-source 12(2.02%) 583(97.98%) 595

Total Predictions 90 605 695

M2

Near-source 77(77.00%) 23(23.00%) 100

Far-source 12(2.02%) 583(97.98%) 595

Total Predictions 89 606 695

M3

Near-source 82(82.00%) 18(18.00%) 100

Far-source 11(1.85%) 584(98.15%) 595

Total Predictions 93 602 695
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Table 6. Misclassification Rates Based on Leave-One-Out Cross-Validation.

Model Prediction Error

M1 36/695 (5.18%)

M2 37/695 (5.32%)

M3 31/695 (4.46%)
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Table 7. Posterior Probability Calculation for Bayesian Model Class Selec-

tion.

M ln Ockhama ln Likelihooda ln Evidencea Probabilityb

M1 -15 -81 -96 0.00

M2 -10 -79 -89 0.11

M3 -12 -75 -87 0.89

a These values are natural logarithms of the Ockham factor, likelihood and

evidence, respectively.

b Probability is calculated from the evidence on the basis that the Mi (i =

1, 2, 3) are equally probable a priori.
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