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Abstract1

The 2011 Tohoku earthquake (Mw9.0) was followed by a large number of aftershocks that2

resulted in 70 early warning messages in the first month after the main shock. Of these3

warnings, a non-negligible fraction (63%) were false warnings where the largest expected4

seismic intensities were overestimated by at least two intensities or larger. These errors can5

be largely attributed to multiple concurrent aftershocks from distant origins that occur within6

a short period of time. Based on a Bayesian formulation that considers the possibility of7

having more than one event present at any given time, we propose a novel likelihood function8

suitable for classifying multiple concurrent earthquakes, which uses amplitude information.9

We use a sequential Monte Carlo heuristic whose complexity grows linearly with the number10

of events. We further provide a particle filter implementation and empirically verify its11

performance in with the aftershock records after the Tohoku earthquake. The initial case12
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studies suggest promising performance of this method in classifying multiple seismic events13

that occur closely in time.14
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Introduction15

During the highly seismically active period after a major earthquake, multiple earthquakes16

can occur almost concurrently at different locations. In this case, the seismic waves measured17

by the ground sensors contain mixed signals from more than one source. If the detection18

algorithm assumes only one quake, the estimated quake parameters (e.g. location and mag-19

nitude) will not be accurate. These inaccurate estimates can lead to false warnings that are20

often observed after large earthquakes.21

The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter called Tohoku earth-22

quake) caused significant damage over a large area of northeastern Honshu. An earthquake23

early warning (EEW) was issued to the public in the Tohoku region about 8 s after the24

first P-arrival, which is 31 s after the origin time (Hoshiba et al., 2011; Sagiya et al., 2011;25

Hoshiba and Iwakiri, 2011). There was no blind zone, i.e., warnings were received at all26

locations before the S-arrivals, since the earthquake was fairly far offshore.27

The main earthquake was followed by a large number of aftershocks that resulted in 7028

early warnings issued in the first month after the main shock (JMA, 2011). Among these,29

63% of the warnings contained significant errors where the estimated seismic intensities were30

at least two scales larger than the observed ones. As a comparison, only 29% of the warnings31

contain such errors prior to the Tohoku earthquake. Post-event analysis revealed that 73% of32
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these errors could be attributed to failure to classify multiple concurrent quakes either from33

the same hypocenter separated by a short amount of time or from spatially distant origins34

(JMA, 2011). One of the main reasons of these false alarms is that the current approach35

uses mainly P-wave arrival time to estimate the hypocenter.36

In this paper, we propose a novel approach to detect and classify multiple concurrent37

earthquakes in the current Japan Meteorological Agency (JMA) system framework. We38

introduce an approximate Bayesian method that estimates the location, magnitude, and39

origin time of multiple concurrent aftershocks. In contrast to the current JMA system,40

this approach produces multiple sets of estimation for earthquakes that occur closely in41

time. The experimental results from several case studies suggest that this approach can42

successfully detect and estimate the parameters of multiple concurrent earthquakes.43

Data and Processing44

This paper includes strong motion data observed by the JMA seismic stations during and45

after the Tohoku earthquake. We evaluate the new classification approach on three sections46

of these records as summarized below. For each record, the values included in the JMA47

EEW are compared to the values that appear in the JMA catalog in Table 1.48
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Data set49

Case 1: 15 March 2011, 1:36:00 - 1:38:00 (two small earthquakes). Early warnings50

were issued to the public based on an estimated JMA magnitude of 5.9 at 21 s after the first51

P-wave detection (see Data and Resources). However, the largest observed seismic intensity52

was only 2 in the JMA seismic intensity scale. As shown in Table 1, at least two events53

about 200 km apart of magnitude 2.5 and 3.3 occurred within 15 s. Since the second event54

started close in time to the wave arrivals of the first event, the EEW system treated these55

separate events as one single earthquake and as a result, overestimated the magnitude.56

Case 2: 20 March 2011, 14:19:00 - 14:21:00 (two small earthquakes). The JMA57

EEW system estimated a magnitude of 7.6 at 6.6 s after the initial detection of P-wave and58

issued a warning to the public (see Data and Resources). However, the largest observed59

seismic intensity was only 3. Again, as shown in Table 1, the overestimation can possibly60

be attributed to mistaking two smaller quakes about 150 km apart (M3.0 and M4.7) that61

occurred within 5 s for one large quake, since the occurrence of the second event was close62

in time to the wave arrival of the first event.63

Case 3: 11 March 2011, 14:46:00 - 14:49:00 (Tohoku earthquake). To demonstrate64

that the method can also handle the classification of a single event, we also include the65
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analysis of the Tohoku earthquake (Mw9.0). An early warning was issued to the public in66

the Tohoku region about 8 s after the first P-arrival, which is 31 s after the origin time (see67

Data and Resources).68

Processing69

This paper uses the three component acceleration data with a sampling rate of 100 Hz70

from about 200 stations. The acceleration data was first converted to SAC format and71

decimated by a factor of 100, reducing the sampling frequency to 1 Hz. The decimation was72

not necessary but was used to reduce computation time. Each component of the decimated73

acceleration k(t) was then converted to displacement A(t). The conversion was done by twice74

integration of k(t) using a recursive digital filter with the frequency response of a mechanical75

seismometer (Katsumata, 2008).76

A(t) = gn× [k(t) + h0 · k(t− 1) + h1 · k(t− 2)]− h2 · A(t− 1)− h3 · A(t− 2), (1)

where the function gain factor gn and filter constants h0, h1, h2, h3 depend on the sampling77

frequency, damping constant, and natural period of the seismometer. For a JMA seismometer78

with 100Hz sampling, 0.55 damping constant, and 6 s natural period, the values correspond79

to:80
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gn = 0.0000248691025, h0 = 1.0, h1 = 1.0, h2 = −1.9889474, h3 = 0.9895828. (2)

The following approach to classification uses both the vector sum of the three component81

displacement A(t) as well as the vertical component of acceleration k(t). The picking is82

done with STA/LTA of k(t) with a short term window of 1 s and long term window of 1083

s. The method also computes expected P- and S-wave arrival times (tp and ts) to determine84

whether a station should have observed P-wave or S-wave or neither. These arrival times85

are computed with the JMA 1D layered velocity structure (Ueno et al., 2002).86

Bayesian Method87

The problem of continuous parameter estimation for multiple events can be formulated as88

a Bayesian inference problem. Let θ be the vector of parameters that characterizes an89

event and Θ be a set of events that are parametrized by θ’s, Θ = {ø, {θ1}, . . . , {θ1, θ2, . . .}}.90

Suppose z1:t is the complete history of observations from all the stations till the current time91

t, the posterior P (Θt|z1:t) reveals the distribution of information of current ongoing events92

at time t given the evidence and prior information.93

P (Θt|z1:t) =
P (zt|Θt) P (Θt|z1:t−1)

P (zt|z1:t−1)
, (3)
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where P (zt|Θt) is the likelihood function and is typically denoted as L, L(zt|Θt) = P (zt|Θt).94

P (Θt|z1:t−1) is the updated prior at time t,95

P (Θt|z1:t−1) =

∫
P (Θt|Θt−1)P (Θt−1|z1:t−1) dΘt−1, (4)

and P (Θ0|z0) ≡ P (Θ0) is the prior distribution of Θ.96

Particle Filter97

In general, Equation (3) does not have a closed-form solution, and there exists several sub-98

optimal solutions to approximate the posterior distribution (Arulampalam et al., 2002), one99

of which is grid search. Grid search, though simple to implement, suffers a few problems.100

First of all, when the parameters are continuous and not sufficiently restricted, the method101

cannot cover the complete parameter space since there can only be a finite number of grids.102

Secondly, the grid size is predefined, and as a result, it requires a large number of grids to103

achieve good coverage at a desired resolution.104

Another solution is the Particle Filter (PF), which is a sequential Monte Carlo method105

that approximates the posterior distribution with a set of weighted particles (Doucet et al.,106

2001). As the number of particles goes to infinity, the solution from PF approaches the107

optimal solution. There is a rich literature on PF and its variation (Doucet et al., 2001;108

Arulampalam et al., 2002; Liu and Chen, 1998). The basic procedure is summarized below109
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for reference.110

Sampling. At the beginning of each iteration, the value of each particle is drawn from an111

important density function q(Θi
t|Θi

t−1, zt). For i = 1, . . . , N112

Θi
t ∼ q(Θi

t|Θi
t−1, zt). (5)

where ∼ denotes that the sample Θi
t is drawn according to the distribution q(·).113

Weight update. PF approximates the posterior with a collection of weighted particles.114

P (Θt|z1:t) ≈
N∑
i=1

wit · δ(Θt −Θi
t), (6)

where wit is the weight for particle i at time t. The sum of total weights are normalized to 1.115

N∑
i=1

wit = 1. (7)

The weights for all particles are updated as new evidence zt comes in and renormalized116

at the end of each update.117

wit ∝ wit−1
L(zt|Θi

t)P (Θi
t|Θi

t−1)

q(Θi
t|Θi

t−1, zt)
, (8)

where q(·) is the same important density that appears in the sampling step. To simplify the118
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calculation, q(·) is often chosen to be the transition prior P (Θi
t|Θi

t−1). Since the terms cancel119

out in the right hand side, the new weight is directly proportional to the likelihood L(zt|Θi
t).120

Resampling. Because the posterior is approximated with discrete particles, the system121

suffers sample degeneracy after a few update iterations when the weight is concentrated on122

a very small number of particles. The decrease in weight variance determines the degree of123

degeneracy that can be approximated with N̂eff (Arulampalam et al., 2002),124

N̂eff =
1∑N

i=1(w
i
t)

2
. (9)

Small N̂eff indicates severe degeneracy in which case resampling is required. Resampling125

essentially eliminates particles with negligible weight by generating a new set of N equally126

weighted particles according to current distribution P (Θt|z1:t). There exists many methods127

for sampling from a discrete distribution, which we will not discuss here.128

Each iteration typically involves one sampling and one weight update. Resampling only129

happens when N̂eff drops below a certain threshold.130

Model131

In the rest of the section, we discuss the practical implementation details of a PF-based real-132

time parameter estimation system for multiple earthquakes. The parameters we would like133

to estimate are θ = [x, y,D,M, t0], where x = longitude (deg), y = latitude (deg), D = depth134
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(km), M = JMA magnitude, and t0 = origin time. Complete pseudo code (Algorithm 1) is135

included in the end of this section.136

Prior distribution. The prior P (θ) determines how the particles are initialized. A137

good prior encodes geographical information such as the location of nearby fault lines to the138

station that first triggered, and the most common magnitudes generated at the fault lines.139

This information can be compiled from historical earthquake catalog for each station and140

used in real time when initializing the PF. If prior information is absent, then a flat prior141

can be used instead. The choice of prior distribution affect the quality of the estimates and142

the convergence rate. Prior distribution of large coverage may cause the initial estimates to143

be unstable because little evidence is present. Priors of small coverage may result in slow144

convergence or false convergence (converging at the wrong values). These tradeoffs can be145

evaluated empirically. In this paper, we use a uniform flat prior of ±100 km for location,146

±10 km for depth, ±1 magnitude for event magnitude, and ±10 s for event origin time.147

Likelihood function. The performance of the particle filter for parameter estimation148

depends largely upon the design of the likelihood function. In addition to the arrival time149

and measured amplitude from the triggered stations that current JMA approach uses, our150

likelihood function also utilize the same information from non-triggered stations as well151

because they also convey important information about the event.152
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In this paper, we use the attenuation relationship developed by JMA for magnitude153

estimation. The relationship is stated as follows (Hoshiba and Ozaki, 2013). Let Amax be154

the maximum displacement measured by a seismometer after the onset of an event. The155

earthquake P-wave and S-wave magnitude Mp and Ms can be expressed as a function of the156

linear distance from the station to the hypocenter (R), the depth of the hypocenter (D), and157

the maximum displacement for P-wave (Apmax) or the maximum displacement of the entire158

duration (Ap+smax).159

0.72Mp = logApmax + 1.2 logR + 5× 10−4R− 5.0× 10−3D + 0.46, (10)

0.87Ms = logAp+smax + logR + 1.9× 10−3R− 5.0× 10−3D + 0.98. (11)

The relationship between the parameters is illustrated in Figure 1. These formulae are160

specifically tailored for the geological compositions in Japan (see Data and Resources). The161

P-wave and S-wave magnitudes are expressed in terms of the maximum displacement Amax162

rather than the maximum acceleration or velocity because the scatter of displacement is163

smaller.164

Given Equation (10) and Equation (11) and that the displacement is log-normally dis-165

tributed A ∼ lnN (µ, σ2), we propose the following likelihood function for a single station,166
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L(z|x, y,D,M, t0) =
exp −(logAmax−logAexp)2

2σ2

Amax · σ
√

2π
. (12)

Here Aexp is the expected Amax and σ is the standard deviation of displacement measurement.167

Depending on whether the station has observed P-wave, S-wave, or neither, the expected168

maximum displacement and its standard deviation are different. For convenience, by rear-169

ranging Equation (10) and Equation (11), we can compute Aexp and σ for the following three170

cases.171

Note that Equation (12) is based on amplitude which departs from standard arrival-time172

based methods. The main reason for adopting this approach is the observation that the173

information of no shaking is critical in separating and classifying multiple earthquakes that174

occur close in space and time. This will be further discussed in Discussion.175

• Has not observed any seismic wave:

logAexp = logAnoise, σ = σnoise. (13)

• Has observed P-wave:

logAexp = 0.72Mp − 1.2 logR− 5× 10−4R + 5.0× 10−3D − 0.46, σ = σp. (14)

• Has observed S-wave:

logAexp = 0.87Ms − logR− 1.9× 10−3R + 5.0× 10−3D − 0.98, σ = σs. (15)
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Anoise and σnoise are the noise in displacement measurement due to recent environmental176

noise and can be computed independently for each station by keeping a running window. σp177

and σs can be precomputed from historical earthquake data.178

The decision of which Aexp to compute for a station depends on whether P-wave, S-wave,179

or neither has arrived at the station. The expected travel time of P-wave and S-wave (tp and180

ts) can be computed with ray theory, given the relative location of the station to a hypocenter181

(x, y,D). Comparison between tp, ts, the absolute current time t, and the absolute event182

start time t0 gives direct estimation of which Aexp to compute for a station. Figure 2 provides183

a illustrative summary of these design ideas.184

This design of the likelihood function is based on the maximum displacement Amax that

a seismometer observes during the shaking of P- or S-wave. However, a seismometer may

not observe the maximum displacement immediately after the wave arrival. In this case,

the initial estimates can be highly incorrect using this likelihood function. A simple delay

function g(·) can be included to approximate the instantaneous displacement before the

maximum is observed,

Aexp = g(t− t0 − tp)Amax, 0 ≤ g(·) ≤ 1. (16)

where t and t0 are the absolute current time and the absolute event origin time. tp is the185

expected P-wave travel time. An example of g(t) is a left shifted sigmoid function.186
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The likelihood L(·|·) is applied in each time step to update the weight of each particle.187

Assuming that each station makes independent observation and the collection of observations188

from all stations is z, the complete likelihood function becomes189

L(z|x, y,D,M, t0) =
n∏
i=1

L(zi|x, y,D,M, t0), (17)

where n is the number of stations. Note that the independence assumption is a minor190

simplification since nearby stations may have correlated observations.191

Generalized Particle Filter192

Particles are initialized according to a prior distribution on the parameters. Since we are193

approximating an unbounded and continuous 5-dimensional space with a bounded and dis-194

crete one, care must be taken to ensure that the particles have sufficient coverage and the195

number of required particles stays bounded. This is especially important for the seismic196

application since both the number of parameters and the range of values they can take are197

large. One way to ensure particle diversity with a limited number of particles is to adopt198

the Regularized Particle Filter (RPF) approach (Arulampalam et al., 2002).199

RPF differs from common particle filter only in the resampling stage. Rather than200

sampling from a discrete approximation of the posterior density P (·|z) as in Equation (6),201

RPF samples from a continuous approximation (Musso et al., 2001). More specifically, RPF202
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draws samples from the approximation,203

P (θ|z) ≈
N∑
i=1

wi ·Kh(θ − θi), (18)

where Kh(θ) = 1
h
K(θ/h), h > 0 is the rescaled kernel density of K(·). h is the bandwidth,204

and wi is the normalized weight for particle i. As a comparison, Kh(θ) is the Dirac delta205

function δ(θ) in the regular particle filter. Special care is given to the design of kernels to206

minimize the error between approximated and actual distribution. Under the assumption207

that all particles are equally-weighted and the density is Gaussian, the optimal kernel is the208

Epanechnikov kernel (Musso et al., 2001).209

Kopt(x) =

{
nx+2
2Cnx

(1− ‖x‖) ‖x‖ < 1

0 otherwise
, (19)

where nx is the dimension of the parameter space, Cnx is the volume of the unit hypersphere210

in Rnx . Figure 3 lists a few popular kernels in the literature.211

The bandwidth vector h can be chosen proportionally to the variance in the particle212

population by computing the Cholesky decomposition of the empirical covariance matrix213

(Bickel and Levina, 2008).214
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Approximate Method for Multiple Concurrent Quakes215

PF allows for solving the Bayesian inference problem when exact inference is intractable;216

however, for the estimates to approach the optimal solution, the number of required particles217

must grow exponentially with the number of events.218

Fortunately, as shown in historical records, the probability of having n concurrent earth-219

quakes within a time window of 60 seconds is exponentially small for large n (n > 3).220

Incorporating this information into the prior distribution can significantly reduce the size of221

the state space. But the state space may still be too large for efficient real-time computation222

even with this information. For example, suppose that the quake can be parameterized by223

a 5-parameter vector θ, θ = [x y D M t0]
T where [x y D]T is the [longitude, latitude, depth]224

coordinate, M is the event magnitude, and t0 is the event starting time. In the presence of225

n = 3 quakes, the states to be searched reside in a 5× 3 = 15-dimensional space.226

This amount of computation may be executable in reasonable time on a supercomputer227

or a networked system of computers with parallel implementation of particle filter (Durham228

and Geweke, 2013; Miao et al., 2010). In this paper, however, we propose a simple heuristics229

to keep track of multiple quakes. The heuristics has the desired property such that the230

complexity grows linearly with the number of the events.231

As a first approximation, the heurisitcs initializes separate particle filters pf1(θ1), pf2(θ2), . . .232
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for all possible quakes rather than keeping track of all events within one particle filter233

pf(Θ = {θ1, θ2, . . .}). Each particle filter communicates its current estimate θ̂ at the end of234

each update step to all other particle filters. Specifically, each particle filter pfi computes235

the following posterior at time t,236

P (θti |z, { ˆθt−1j , j 6= i}). (20)

This approximation breaks down the 5n state space where n is the number of concurrent237

quakes, and dramatically reduces the required computations to keep all events estimation238

up to date. It is suboptimal, however, since all the particles from pf1, pf2, . . . combined only239

cover a small fraction of the complete parameter space.240

The heuristic initializes a new particle filter with each single station P-wave pick, using a241

high enough threshold such that noisy detections are filtered out. Since local detection can be242

due to an existing event that is being tracked by another particle filter, it is necessary to con-243

dition new initialization on a separate metric. A natural choice of metric is P
[
z|θ̂1, θ̂2, . . .

]
,244

i.e., the probability that the triggered measurement can be explained by existing events.245

Computation of this metric can follow directly from the single station likelihood calculation246

as in Equation (12); however, determining Aexp is nontrivial in this case since it involves247

computing the additive effect of the interference of multiple wavefronts. We propose an al-248
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ternative metric which allows for rapid computation; the metric is the probability of shaking249

due to any of the existing events and threshold on the highest probability:250

max
i

P
[
z|θ̂i
]

= max
i
L(z|θ̂i)

{
< τ, initialize new pf

≥ τ, do nothing
. (21)

By tuning the threshold τ , we adjust how conservative the system is in declaring new251

events. The complete algorithm is outlined in Algorithm 1 in the appendix for reference.252

Results253

We carried out the particle filter parameter estimation approach on the data described in254

Data and Processing, using a flat prior around the first triggered station and 1,000 particles255

for each particle filter. The algorithm updates at a one-second interval and all experiments256

were run in simulated real-time.257

Case 1: 15 March 2011, 1:36:00 - 1:38:00 (two small earthquakes). 20 trials258

were performed during this period of time. Snapshots of the particle distribution for one of259

the runs are shown in Figure 4. The averaged time histories of the estimated parameters260

across all 20 runs were compared against the JMA unified catalog (marked as dotted lines)261

in Figure 5. The standard deviations across all runs are included as the error bars. The262

labeled x-axis corresponds to seconds since the first detection of the first event. As the263
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results demonstrate, the first particle filter was initiated at the first P-wave arrivals, and264

15 s later, another particle filter was created. This approach successfully identified the two265

separate events. In addition, all estimates converge within 10 s after the initializations. On266

average, the method is able to localize the epicenters to within 20 km and produce magnitude267

estimates with an error of ±1, relative to the JMA unified hypocenter catalog (Table 1).268

Case 2: 20 March 2011, 14:19:00 - 14:21:00 (two small earthquakes). We repeated269

the analyses for the dataset of Case 2, where two small earthquakes occurred 5 s apart. The270

snapshots of particle distributions and time series of estimated parameters are included in271

Figure 6 and Figure 7. Note that in this example, because the first event occurred offshore272

and there were fewer near-source recordings, localization and estimation of other parameters273

are more challenging than for Case 1. Indeed, the results showed that the estimates converge274

slower (about 30 s for event A), and the averaged localization error was relatively large (about275

80 km for event A, relative to the JMA unified hypocenter catalog (Table 1). However, the276

algorithm was still able to identify and separate the two events and provide accurate estimates277

of their magnitudes to within ±0.5.278

Case 3: 11 March 2011, 14:46:00 - 14:49:00 (Tohoku earthquake). We used the279

dataset of the Tohoku earthquake to show that the approach also works for a single event.280

The snapshots of particle distributions and time series of estimated parameters are included281
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in Figure 8 and Figure 9. Since the event was originated offshore, there was substantial282

localization error in the initial estimates. However, the averaged error decreased with time283

and converged at less than 40 km at 40 s after the initial P-wave arrival. The magnitude284

estimate grew from 6.0 to 8.4 as the earthquake rupture propagated, which is consistent with285

the earthquake rupture physics. At convergence, all five estimated parameters were close to286

the values in the JMA catalog.287

Discussion288

Current JMA methods to detecting and associating multiple quakes perform well when the289

events are far apart in space or time. However, they have been shown to generate many false290

alarms when events are close in space or time (Sagiya et al., 2011). The empirical studies291

suggest that the particle based heuristic can successfully separate multiple concurrent seismic292

events and provide reasonable estimates of their parameters. And the speed of convergence293

may be improved by incorporating P-wave arrival time in the likelihood, i.e., the residual294

between observed and predicted P-wave arrival times. The results show that estimated295

parameters converge in less than 10 s for inland earthquakes. For offshore earthquakes, the296

estimates converge in 20-30 s. In terms of localization error, we observed less than 20 km297

for inland earthquakes, and 20-80 km for offshore events.298

In order to classify multiple concurrent earthquakes, the use of non-triggered stations is299
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important. The current JMA EEW system uses arrival times of waves at only the triggered300

stations in the hypocenter calculation. As a result, when multiple earthquakes occur around301

the same time and the later event occurs close to the wave arrival times of the earlier302

event, the EEW system treats these events as one single earthquake. If this is the case303

and the stations around the later event observes non-negligible shakings, the current system304

may overestimate the magnitude because these stations are far away from the estimated305

hypocenter (i.e., the location of the earlier event). In our approach, the likelihood function306

uses information from not only the triggered stations but also the non-triggered ones. This307

design together with the adaptive measure of Anoise allow the algorithm to identify unaffected308

regions between events and is therefore crucial in separating multiple concurrent earthquakes.309

Another advantage of our approach is the use of regularized particle filter to circumvent310

the need for intensive computation that traditional grid search requires. Although a prior311

distribution is still required as mentioned in Model, such a distribution can be compiled from312

historical records. Alternatively, initial measurements can be used to “select” the appropriate313

priors to achieve better performance (Liu et al., 2011).314

This approach is also subject to several weaknesses. For example, the algorithm is sen-315

sitive to the choice of prior distribution, the number of particles, the values of Anoise, σnoise,316

σp and σs. While these values can be adjusted and adapted in real time, it requires extensive317

empirical studies and analyses of historical records for the algorithm to be robust. Some of318
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the slow convergence and high variance results in Results may be attributed to suboptimal319

choices in these parameters.320

In this paper we use only three cases to test the proposed method, so we are currently321

carrying out more extensive evaluations of our method using the many examples of multiple322

earthquake sequences that have occurred over the last several years.323

As a side note, the performance of parameter estimation for multiple seismic events is324

limited by how well one can model the ground motion when multiple wavefronts overlap. In325

the algorithm proposed in Model, this model is not considered. While the omission makes326

little difference in the case studies where the events are spatially far apart (greater than 100327

km), if we want to apply the same technique to separate aftershocks from mainshock that328

occur close in time, then such model should be considered.329

Conclusion330

In the seismically active period, multiple earthquakes of similar or distant origins can take331

place at almost the same time. Failure to identify them as separate events leads to poor332

estimates of their parameters. The error in estimates can in turn cause false warnings. In333

this paper, we study the problem of detecting and classifying multiple earthquakes that334

occur close in time. Based on a Bayesian formulation that considers the possibility of having335

more than one event present at any given time, we propose a novel likelihood function336
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suitable for classifying multiple concurrent earthquakes and present a sequential Monte Carlo337

heuristic whose complexity grows linearly with the number of events. The performance338

of the heuristic is empirically validated with three sets of JMA seismic records after the339

2011 Tohoku earthquake. The initial studies show that the approach is able to successfully340

separate multiple events that occur close in space and time and estimate their parameters341

in realtime to a reasonable degree of precision in comparison to official values determined342

by JMA in the post event analyses. Although complete validation and characterization are343

required before this method applied in realtime detection, the initial results show that our344

approach can reduce the chance of overestimation of earthquake magnitude and, as a result,345

contribute to the design of a better EEW system.346

Data and Resources347

Waveform data used in the present study were extracted from continuous recordings of348

the stations within the JMA strong motion network. The JMA EEW performance of349

three cases is available at; http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/350

20110315013605/content/contentout.html, http://www.seisvol.kishou.go.jp/eq/EEW/351

kaisetsu/joho/20110320141959/content/contentout.html, and http://www.seisvol.352

kishou.go.jp/eq/EEW/kaisetsu/joho/20110311144640/content/contentout.html (last353

accessed July 2013). We use Seismic Analysis Code (http://www.iris.washington.edu/354

http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110315013605/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110315013605/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110315013605/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110320141959/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110320141959/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110320141959/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110311144640/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110311144640/content/contentout.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110311144640/content/contentout.html
http://www.iris.washington.edu/software/sac/manual/fileformat.html
http://www.iris.washington.edu/software/sac/manual/fileformat.html
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software/sac/manual/fileformat.html, last accessed July 2013) for the data processing.355

The JMA attenuation relationship are available in the report of the second JMA EEW356

evaluation committee (http://www.seisvol.kishou.go.jp/eq/EEW/MeetingHYOUKA/t02/357

shiryou.pdf, last accessed July 2013).358
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Table 1: Summary of the earthquake information studied in this paper.
Mest Lon Lat Dep Date Time M Lon Lat Dep

Case 1 5.9 138.6 36.9 10
03-15 01:35:57.35 2.5 138.610 36.938 3.4
03-15 01:36:12.72 3.3 139.879 35.526 20.5

Case 2 7.6 142.1 38.2 30
03-20 14:19:38.27 3.0 141.935 38.286 42.3
03-20 14:19:58.06 4.7 140.794 37.082 7.2

Case 3 8.6 142.7 38.2 10 03-11 14:46:48.08 9.0 142.861 38.103 23.7
The first four columns correspond to the real-time JMA EEW records. The last six columns
are the values documented in the JMA unified hypocenter catalog. Both Case 1 and 2
contain two events.

RD

Hypocenter 

Station 

P-wave S-wave 

tp 

ts 

Ap
max 

Ap+s
max 

t0 

(a) (b)

Figure 1: Illustrations of the parameters used in Model. (a) Hypocenter and seismic station
and (b) amplitude and arrival times. tp and ts mark the arrival time of the P-wave and
S-wave since the start of the earthquake at t0, tp ≤ ts.
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Epicenter 
S-wave front 

P-wave front 

Stations that 

seismic shaking 
Eq. (13) 

Stations that 
have observed 
only the P-
wave 
Eq. (14)  

Stations that  
have both  
P- and S-
wave 
Eq. (15) 

Figure 2: Illustrative summary of the design of a single station likelihood function. The
expected observation made by a station depends on whether it should have observed P-
wave, S-wave, or neither, given an hypocenter estimate.
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Figure 3: Some popular smoothing kernels used in regularized particle filter. Each kernel
integrates to 1 to ensure that the resulting density is still a probability density function.



Liu and Yamada 31

(a)

(c)

(b)

(d)
136 137 138 139 140 14134

34.5

35

35.5

36

36.5

37

37.5

38

136 137 138 139 140 14134

34.5

35

35.5

36

36.5

37

37.5

38

136 137 138 139 140 14134

34.5

35

35.5

36

36.5

37

37.5

38

A

B

Figure 4: Distributions of 2,000 Particles visualized on the map at (a)1 s, (b)2 s, (c)14 s,
and (d)17 s after 1:36:07 on 15 March, 2011. The time correspond to seconds elapsed since
the first P-wave detection. The official epicenters for the two events as appeared in the JMA
catalog are marked as stars and labeled in (d) for reference.
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Figure 5: Results compiled from 20 independent runs for the period between 1:36:07 and
1:36:37 on 15 March, 2011. Time histories of the (a) localization error, (b) magnitude,
(c) depth of the hypocenter and (d) origin time of the event. The two events are labeled
according to Figure 4(d). Averaged time histories across all 20 runs are marked as solid
lines, and the official values that appear in the JMA catalog are marked as dashed lines.
The standard deviations across all runs are shown as error bars. The time displayed on the
x-axis is relative to the first pick from the earliest event.
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Figure 6: Distributions of 2,000 Particles visualized on the map at (a)2 s, (b)7 s, (c)17 s,
and (d)37 s after 14:19:56 on 20 March, 2011. The symbols are defined the same way as in
Figure 4.
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Figure 7: Results compiled from 20 independent runs in the period between 14:19:56 and
14:20:36 on 20 March, 2011. The subfigures and included symbols are defined the same way
as in Figure 5.
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Figure 8: Distributions of 1,000 Particles visualized on the map at (a)2 s, (b)7 s, (c)13 s,
(d)22 s, (e)32 s, and (f)62 s after 14:46:46 on 11 March, 2011. The symbols are defined the
same way as in Figure 4.
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Figure 9: Results compiled from 15 independent runs for the period between 14:46:46 and
14:48:46 on 11 March, 2011. The subfigures and included symbols are defined the same way
as in Figure 5.

A Appendix408
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Algorithm 1: Outline of regularized Particle Filter for multiple seismic event detection.
The ”CONVERGED” criteria can be substituted with desired conditions, e.g. change

in estimates
∥∥∥θ̂t−10 − θ̂t−1∥∥∥ < δ.

PF ← {}
Initialize thresholds τ , α
Initialize bandwidth vector h′ ∈ Rnx

while not end do
? Check for new event
Z ← list of station measurements that triggered
for z ∈ Z do

pr ← maxk L(z|θk)
if pr < τ then[
{θi, wi}Ni=1

]
← RPF

[
{θi, wi}Ni=1, z

]
for i = 1→ N do

Draw θi ∼ P (θ, z)
Assign weights based on prior and z, wi ∼ P (θ, z)

pf ←
[
{θi, wi}Ni=1, z

]
PF ← PF ∪ pf

? Update weight, resample if needed

for pf ∈ PF do
{θi, wi}Ni=1 ← pf
for i = 1→ N do

wi ← wiL(z|θi)[
{θi, wi}Ni=1

]
← NORMALIZE

[
{θi, wi}Ni=1

]
Compute N̂eff ← 1∑N

i=1 w
2
i

if N̂eff < α then[
{θi, wi}Ni=1

]
← RESAMPLE

[
{θi, wi}Ni=1, z

]
for i = 1→ N do

Draw ε ∼ K from the Epanechnikov Kernel
Compute weighted empirical covariance matrix Sk of {θi, wi}Ni=1

Compute lower triangle Dk = chol(Sk), DkD
T
k = Sk

θi ← θi + h′Dkε

? Check for termination
for pf ∈ PF do
{θi, wi}Ni=1 ← pf
if CONV ERGED

[
{θi, wi}Ni=1

]
then

PF = PF − pf
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