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"1 Early radiation and final magnitude : insights from source kinematics
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The IV2 points evaluated for the whole signal S (diamonds in the case of large events) are aligned along a straight  mweheed P Watt
line, with a slope compatible with the expected scaling factor of 1.5. Straight lines with this slope fit both the P and B 2 The predominant period is:
S data up to a magnitude M = 5.8. Beyond this, the early energy increases less, or does not increase at all, with ’ e Lo -
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Station (PD2IV2 )* (PD#IV2)s Slip P(m)
ISK006 - -0.70 0.84

ISK003 -1.02 -0.77 0.78

ISK009 -1.09 -0.89 0.51
ISK007 -0.87 -0.67 0.70
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