Probabilistic Prediction of Rupture Length, Slip and Seismic Ground Motions for au Ongoing Rupture

Tom Heaton, Caltech Maren Böse, Caltech Masumi Yamada, Kyoto Univ

EEW Bad News

- Near source area for M 6.5 is has a diameter of about 30 km
- Even with perfect technology, warning times will be, at most, several seconds
- There will be ten M 6.5's for the occurrence of every M 7.5

EEW Good News

- Near source area of a M 7.5 + earthquake will be 5 to 20 times larger than for a M 6.5
- Many heavily shaken areas can get significant warning times in a M 7.5

EEW for a Long Rupture

- Should warn some areas that rupture is headed towards them and strong shaking is possible
- Real-time analysis of a finite rupture is challenging
- Few events to practice on
- If we fail on a large event it may be the only chance in a generation

Percent of area receiving warning time T or greater (log N*=6.89-M_w)

Example of the Shake-Out Scenario

- So easy to know what happens next because we created it
- Let's assume that at any point in time that we know 1) the causative fault, 2) the current rupture length, and 3) the current slip of an ongoing rupture (GPS?)
- What is the likelihood of different rupture lengths and magnitudes?

Given equal surface areas, islands with rougher topography have higher average elevations

From J. Liu and T. Heaton

Observed vs. Simulated slip/length

Liu-Zheng and Heaton

Early Warning for Large Earthquakes (Research)

Large earthquakes (M>7.0) are rare, but they affect much larger areas with damaging ground shaking and provide longer warning times !

A probabilistic approach (Bayesian):

$$p\left(\log(L_r)|\log(D_p)\right) = \frac{p\left(\log(D_p)|\log(L_r)\right)p\left(\log(L_r)\right)}{p\left(\log(D_p)\right)}$$

"Probability of L_r for a given D_p "

Rupture length L_r D_p : present slip amplitude L_r : remaining rupture length

<u>1-D slip function:</u>

Slip

How far will the rupture propagate ?

Early Warning for Large Earthquakes (Research)

Large earthquakes (M>7.0) are rare, but they affect much larger areas with damaging ground shaking and provide longer warning times !

A probabilistic approach (Bayesian):

D_p: present slip amplitude

L, : remaining rupture length

RESULT:

• The *a priori* probability (AP) for the occurrence of earthquakes of different magnitudes is extremely important.

• The AP depends on the **characteristics of the underlying fault** (slip heterogeneity on generic/mature faults)

 $p\left(\log(L_r)|\log(D_p)\right) = \frac{p\left(\log(D_p)|\log(L_r)\right)p\left(\log(L_r)\right)}{p\left(\log(D_p)\right)}$

EEW for large earthquakes requires a rapid recognition of the rupturing fault !

Presentation by Tom Heaton

Conclusions

- Bayesian statistical framework allows integration of many types of information to produce most probable solution and error estimates
- Strategies to determine rupture dimension and slip look promising …GPS
- Identification of rupture on several key faults (e.g. San Andreas) may be a high priority

Real-time prediction of ultimate rupture Böse and Heaton, in prep.

Is the rupture on the San Andreas fault?

Probabilistic Rupture Prediction — **Probabilistic Ground**

17

Strategy to Handle Long Ruptures

- Determine the rupture dimension by using high-frequencies to recognize which stations are near source
- Determine the approximate slip (and therefore instantaneous magnitude) by using low-frequencies and evolving knowledge of rupture dimension
- GPS