

Using W phase for regional tsunami warning and rapid earthquake hazard assessment

Luis Rivera¹ Hiroo Kanamori²

¹Strasbourg University, Institut de Physique du Globe

²Seismological Laboratory, Caltech

2nd International Workshop on Earthquake Early Warning Kyoto, April 21-22, DPRI, Kyoto University

W-phase

Introduction

- We have recently developed a source inversion technique based on the waveform modeling of W-phase.
- W-phase is a very long period (200s-1000s) phase arriving right after the P.
- It was first recognized after the 1992 Nicaragua earthquake.
- The inversion technique was originally devised to work for large events (Mw>~7.5) with teleseismic data and it provideas a VLP characterization of the source (e.g. Tsunami earthquakes).
- We explore here the possibility of an application with regional data and with smaller magnitudes.

個 とく ヨ とく ヨ とう

W-phase

Example: Nicaragua, 1992

ъ

W-phase

Example: Nicaragua, 1992

W-phase:

Example: Nicaragua, 1992

Deconvolved + bp 200s-1000s

W-phase:

Example: Nicaragua, 1992

Deconvolved + bp 200s-1000s

Time window

W-phase time-window $P, P + 15\Delta \ s/\circ$

L. Rivera, H. Kanamori W phase source inversion, regional application

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

W-phase in the global context

Definition

- ► Time window: P, P+15△
- Bandpass: .001 Hz .005 Hz

Properties

- Fast group velocity: 4.5-9 km/s
- Fairly insensitive to:
 - shallow lateral heterogeneities

- source second order details
- Avoid large amplitude surface waves

Source retrieval from W-phase

Inversion: main features

- Time domain
- Point source (VLP data)
- Need a preliminary source location: PDE, JMA
- Library of precomputed Green's functions
- Linear inversion –> Moment tensor components
 - PDE (Δ < 50°): t₀ + 20 min
 - Grid search ($\Delta < 90^{\circ}$): $t_0 + 35$ min
- **•** RT implementation: β -test at NEIC-USGS, (Gavin Hayes)

Example: global data

Tokachi-Oki-2003

2003 Tokachi-oki WP inversion

PDE location $t_h = 30s, t_d = 30s$ $M_w = 8.24$

Optimized centroid $M_w = 8.31$

GCMT centroid CMT $t_h = 30s, t_d = 30s$ $t_h = 31.8s, t_d = 33.5s$ $M_w = 8.3$ $M_{w} = 8.27$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E > < E >

 $t_0 + 20 \min t_0 + 35 \min$

Regional data

Extension to regional data and lower magnitudes

- ► Target: Mw >~ 6.5
- Data distribution:
 - $\Delta < 12^{\circ} \rightarrow 6$ min.
 - Δ > 5°: high gain data, nonlinearity.
- Modifications:
 - ► Time window: (P, P+15△) inappropriate
 - Frequency band: signal/noise ratio

通 とく ヨ とく ヨ とう

W-phase time window

▶ ★ 臣 ▶

ъ

W-phase time window

▶ ★ 臣 ▶

ъ

Extension to lower magnitudes

Acceleration noise spectrum at MAJO

Extension to lower magnitudes

Acceleration noise spectrum at MAJO

Extension to lower magnitudes

Acceleration noise spectrum at MAJO

Data: Japanese broadband network (F-net) Events: $M_{jma} > 6.7$ 2003-2008

F-net, 2003-2008, *M_{jma}* > 6.7 (1/4)

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

F-net, 2003-2008, *M*_{jma} > 6.7 (2/4)

L. Rivera, H. Kanamori W phase source inversion, regional application

ヨ▶▲ヨ▶ ヨ のへで

F-net, 2003-2008, *M*_{jma} > 6.7 (3/4)

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

F-net, 2003-2008, *M_{jma}* > 6.7 (4/4)

(ロ) (同) (目) (日) (日) (の)

Regional W phase focal mechanisms ($t_0 + 6min$)

Regional W-phase, example of fit: 2008 Iwate

Moment Magnitude: gCMT - W-phase

2003 Tokachi-oki: depth effect

 $M_{\rm W} = 8.02$

 $M_{W} = 8.15$

 $M_{W} = 8.26$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusions

- We use F-net data in the range ($5^{\circ} < \Delta < 12^{\circ}$)
- Time window: t_P , t_P + 180s
- Variable frequency band: (.00167Hz - .005Hz) → (.005Hz.010Hz)
- Moment tensor solution available at $t_0 + 6min$
- Can be done completely automatic and
- Provide a solution 6 min after the origin time.