The 2nd International Workshop on Earthquake Early Warning April 21-22, 2009, Kyoto (Japan)

> Up-dates on EEW Testing (of the T_c-P_d Algorithm) and Finite Fault Research at Caltech

Maren Böse, Egill Hauksson, Kalpesh Solanki, Hiroo Kanamori, Yih-Min Wu, Thomas Heaton

Seismological Laboratory, California Institute of Technology, Pasadena; mboese@gps.caltech.edu

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	τ_{c} -P _d trigger criterion

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	$\mathbf{\tau}_{c}$ - \mathbf{P}_{d} trigger criterion

 τ_c -P_d trigger criterion

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	$\mathbf{\tau}_{c}$ - \mathbf{P}_{d} trigger criterion

 τ_c -P_d trigger criterion

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	$\mathbf{\tau}_{c}$ - \mathbf{P}_{d} trigger criterion

 τ_c -P_d trigger criterion

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	τ_{c} -P _d trigger criterion

 τ_c -P_d trigger criterion

Böse et al., 2009b

Time	Step/Event	CISN Channels	Observation	Solution/Action
2007-2008	Implementation and initial testing of the τ_c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	$\mathbf{\tau}_{c}$ - \mathbf{P}_{d} trigger criterion

previous

with τ_c -P_d trigger criterion

Time	Step/Ev	vent		C Cha	SISN Annels	5	Obs	ervation		Solu	tion/Action
July 29, 2008	Chino Hills N	1 _w 5.4			I	60 Es Fir	bod perfo triggerect stimates: N rst report:	rmance: I CISN statio I _w 4.4-6.5 (m 10 seconds	ons nedian: I s after C	M _w 5.6)).T. (M _w 6.	1)
L km	Obs ground	erved I motio	d ons				LosA	F grou	Predic und m	ted otions	
0	50 PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme	50 s
	DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy	
	PEAK AOC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124	Böse et al.,
	PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	18-31	31-60	60-116	>116	2009a
	INSTRUMENTAL	1	11-111	IV	V	VI	VII	VIII	IX	X+	

With station corrections:

 $M_{w}: \pm 0.5^{*}$ MMI: $\pm 0.7^{*}$

* standard deviation

Böse et al., 2009a

Time	Step/Event	CISN Channels	Observation	Solution/Action
2008-2009	State-wide implementation, including strong motion sensors	CI, AZ BK, NC, NP state-wide 221 HH channels 364 HN channels at 382 locations	Similar results for HH and HN channels	

California Integrated Seismic Network (CISN)

R. Allen

Time	Step/Event	CISN Channels	Observation	Solution/Action
2008-2009	State-wide implementation, including strong motion sensors	CI, AZ BK, NC, NP state-wide 221 HH channels 364 HN channels at 382 locations	Similar results for HH and HN channels more false triggers at HN	in progress

USGS NP-5337 CA: San Bernardin

CGS CSMIP-23788 Colton - 3-bldg Hospital Complex

CESMD, 2009

Time	Step/Event	CISN Channels	Observation	Solution/Action
Since Nov. 2008	Deployment of SLATE field p	processors and on-	site processing software	in progress

• power consumption: 0.4W (idle) to 0.9W (both Ethernet ports active)

• operational temperatures: -20 to +60 Celsius.

Early Warning for Large Earthquakes (Research)

Large earthquakes (M>7.0) are rare, but they affect much larger areas with damaging ground shaking and provide longer warning times !

D_p : present slip amplitude
L_r : remaining rupture length

A probabilistic approach (Bayesian):

$$p\left(\log(L_r)|\log(D_p)\right) = \frac{p\left(\log(D_p)|\log(L_r)\right)p\left(\log(L_r)\right)}{p\left(\log(D_p)\right)}$$

"Probability of L_r for a given D_p "

How far will the rupture propagate ?

Early Warning for Large Earthquakes (Research)

Large earthquakes (M>7.0) are rare, but they affect much larger areas with damaging ground shaking and provide longer warning times !

A probabilistic approach (Bayesian):

$$p\left(\log(L_r)|\log(D_p)\right) = \frac{p\left(\log(D_p)|\log(L_r)\right)p\left(\log(L_r)\right)}{p\left(\log(D_p)\right)}$$

RESULT:

- The *a priori* probability (AP) for the occurrence of earthquakes of different magnitudes is extremely important.
- The AP depends on the **characteristics of the underlying fault** (slip heterogeneity on generic/mature faults)

EEW for large earthquakes requires a rapid recognition of the rupturing fault !

 \rightarrow Presentation by Tom Heaton

Time	Step/Event	CISN Channels	Observation	Solution/Action
July 2005	First EEW workshop at Calt	tech		
June 2006	CISN as a test-bed for algo	rithm testing (proje	ect by Caltech, UC Berkeley, USC	C/SCEC, USGS)
2007-2008	Implementation and initial testing of the τ _c -P _d algorithm at Caltech	CI, AZ southern CA 172 HH channels	Many false triggers Scattering in M estimates for small earthquakes	τ _c -P _d trigger criterion install testing server
July 29, 2008	Chino Hills M5.4	HANK	ogger time dent	Process native Q330 wave packets Enhance log-files Station corrections
2008-2009	State-wide implement ation, including stron motion sensors	state-wide 221 HH channels 364 HN channels at 382 locations	H HN peed More false triggers at HN	Optimization of source code (compact instead of modular design) Higher thresholds for HN/coupling with HH (in progress)
Since Nov. 2008	Deployment of SLATE field	processors and on-	site processing software (in prog	jress)
April 2009	 Capability to "replay" off-line data as real- time data stream Northridge, Landers etc. earthquakes from other regions simulated waveform data /scenarios noise records 		Objective: Enhance algorithm performant - evaluate impact of ch - assess uncertainties/ - improve station correct - optimize station dist EEW for large earthquakes	nce aanges in the code freduce false triggers ections ribution

Time	Step/Event	CISN Channels	Observation	Solution/Action
2008-2009	State-wide implementation, including strong motion	CI, AZ BK, NC, NP	Similar results for HH and HN channels	
	sensors	state-wide 221 HH channels 364 HN channels	more false triggers at HN Slowing down of	
		Picker:		

Time	Step/Event	CISN Channels	Observation	Solution/Action
2008-2009	State-wide implementation, including strong motion sensors	CI, AZ BK, NC, NP state-wide 221 HH channels	Similar results for HH and HN channels more false triggers at HN	Ontimization of
		at 382 locations	processing speed	source code
	Compact code design → Poster by K. Solanki	And Andread Andre Andread Andread Andr		