Earthquake Early Warning in Japan

- Provision to the General Public and its Results -

DOI, Keiji Japan Meteorological Agency

Plate Tectonics around Japan

Seismicity in and around Japan 地震発生状況

including 2,000 felt earthquakes

Great Hanshin-Awaji Earthquake (1995)

Niigata Chuetsu Earthquake (2004)

Tsunami Disaster by the Southwest off Hokkaido Earthquake in 1993 (July 12, 1993, M7.8)

Eruption of Usu Volcano in 2000

Earthquake Early Warning
 Tsunami Warning / Information
 Earthquake Information

 Location, Magnitude, Seismic Intensity

Earthquake Prediction in the Tokai areaVolcanic Warning / Information

2000-	Development of EEW technology			
	B- Δ method was develped by JMA and RTRI			
2004.2.25	Start of trial provision (For Kanto-Tokai-Nankai area)			
2005.3.28	Expand of trial dissemination area (For Hokkaido-			
	Tohoku area)			
2005.6	Integrate of 'Not Yet Arrived Data Method' algorithm			
	developed at National Research Institute for Earth			
	Science and Disaster Prevention			
2006.3.31	Expand of trial dissemination area (For whole country)			
2006.8.1	Start provision for the limited online users			
	familiarize general public about EEW			
2007.10.1	Start provision for the general users through various			
	media outlets such as TV and radio.			
2007.12.1	The revision of the Meteorological Service Law			

Earthquake Early Warning System

Forecast / Warning **Provision to public** started on Dec. 1, 2007 started on Oct. 1, 2007 How to acquire EEW Using TV, radio, local-governmental radio, cellular EEW receivers, dedicated systems, etc. provided by private companies phone, etc. Image of TV broadcast Earthquake Early Warning hquake occurs off the coast of Miya ng Wave Alert for Mivagi and . re) Employment situation in Predicted earthquake intensity Areas where strong tremors (intensity 4 and up) may and the expected time of arrival in each point. occur when the max. intensity is 5 lower and up. Example of Response to EEW **Controlling trains and Elevators** To enable personal protection at home Earthquake **Early Warning**

Line Control, Safety action

Ideas to establish EEW system

On-site data processing

Estimating a source parameter, PGA, PGV Data transmission using compressed data format

Estimation of source parameters

Several methods being used for the source parameter estimation according to available data

Estimation of seismic ground motion

Seismic Intensity being estimated for ground motion forecast

Provision of warning/forecast

Provision of warning to the public through broadcasting media

Estimation of strong motion at a recipients site being served by forecasting company

Seismic Observation Network

Seismic Station

Sensor left : accelerogram middle : velocity

- Accelarogram and velocity meter
 Sampling with 100Hz·24Bit
 Time calibration by GPS clock
 On-site processing of seismic data
 Poculta are transmit to the
- Results are transmit to the Center with waveform data

Transmission of seismic data

- Compressed data are transmit through digital communication network every 1 second
- Results of on-site processing are forwarded to the servers simultaneously

Seismic Intensity Estimation

Dissemination of EEW

An actual example

Public Education

Drill

A drill at an elementary school

A scene of 2nd Grade pupils at Hirata Elementary School in Kamaishi, Iwate, participating in a drill on 4th July 2008 huddling under their desk after receiving EEW through City Government Disaster Administration Radio.

Case study : all cases of EEW to the public

detection time of a seismic wave

08:43:50.7

	issue time	elapse time from the detection (in second)	latitude (degree)	longitude (degree)	depth	М	estimated maximum intensity	
1st	08:43:54.2	3.5	38.9	141.1	10km	5.7	5Lower	* S
2nd	08:43:55.2	4.5	39.1	141.0	10km	6.1	5Upper	
3rd	08:43:56.1	5.4	39.0	140.9	10km	6.2	5Upper	
4th	08:43:56.8	6.1	39.0	140.9	10km	6.3	5Upper	
5th	08:43:59.1	8.4	39.0	140.9	10km	6.7	6Upper	
6th	08:44:02.1	11.4	39.0	140.9	10km	6.7	6Upper	
7th	08:44:13.1	22.4	39.0	140.9	10km	6.9	6Upper	
8th	08:44:21.1	30.4	39.0	140.9	10km	7.0	6Upper	
9th	08:44:42.1	51.4	39.0	140.9	10km	7.0	6Upper	
10th	08:44:53.6	62.9	39.0	140.9	10km	7.0	6Upper	

*estimated with a single station

Off Ibaraki Earthquake (2008/5/8 M7.0)

Off Ibaraki Earthquake (2008/5/8 M7.0)

SUMMARY

- Seismic Information and Tsunami Warning has been issuing by JMA.
 - Dense seismic network (seismic station + communication)
 - Sophisticated processing system
 - Various dissemination way
- Environment to accept EEW being prepared
- Technical development of the hypocenter estimation method using fewer seismic data
- Collaboration with related government/non-government organizations
 - Promotion of EEW utilization
 - Technical limitation
 - Drill

Further technical development

 Source and ground motion estimation method for M8 class earthquake

- Can we estimate a magnitude during rapture is going?
- How do we consider effects of asperities size and seismic waves directivity in ground motion estimation?

 Revision of the attenuation relationship between epicentral distance and PGV

- Taking into account 3D structure of crust
- Forecast of long period ground motion

Thank you for your attention.