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Abstract 
We introduce a paper, Minami et al. (2020), published in Earth, Planets and Space, which reports a 

candidate secular variation (SV) model for IGRF-13 based on MHD dynamo simulation and the four-

dimensional ensemble-based variational (4DEnVar) data assimilation technique. 

 

IGRF-13 に候ึモデルとして఑出された、MHD ダイナモシミュレーションと四次元アンサンブルร

෾๑に基づくஏ磁気永೧ร化 (SV) モデルに関する EPS࿨ช 、Minami et al. (2020)、 について紹介する。 
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Abstract
• IGRF-13 (2019年12月発行; Alken et al. 2020)にSecular 

Variation (SV)モデルを提出した。 

• 地磁気の短期予測（5年）に、4DEnVarと呼ばれるデー
タ同化手法を初めて適用した。 

• 4DEnVarによる手法が、IGRF-12と同等の予測精度を
実現できることを確かめた。 

• 初めて、IGRFに対し日本からモデルによる貢献を果た
した。
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IGRF (International Geomagnetic 
Reference Field)

本グループからは2019年9月末に、リーダー藤浩明より、

IAGA IGRF Working Group に”京都大学モデル”として、SVモデルのみ提出

IGRF-13 (2025.0まで有効)に提出されたモデル３種類：

• Definitive field at 2015.0 (ガウス係数、次数13まで)

• Main field at 2020.0 (ガウス係数、次数13まで)

• Secular Variation (SV) from 2020.0 – 2025.0 (ガウス係数時間一次微分値、次数8まで)

IGRFへの候補モデル提出のルール：

ü Definitive field, Main field, SVのうち、どのモデルを提出して良い

ü 各モデルについて、１研究機関１モデルまで

ü IGRF-13 (2019年12月発行)については、2019年9月30日がモデル提出の期限

En4DVarによるSVモデル作成の概念図
Fig. 1

灰色領域：960個のMHDダイナモシミュレーション（アンサンブル）

青線　　：960個のダイナモシミュレーションの重み付け平均

赤点線　：青線の未来への延長から推定されたSecular Variation モデル
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Theory: Iterative 4DEnVar

(Four-dimensional Ensemble-based Variational method; Nakano 2020)

時刻kにおける最終的な観測予測：
初期状態のアンサンブル平均 重みベクトル
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approximation Eq. (3) (and resulting Eq. (6)) imposes us 
on two requirements:

 (I) the assimilation window indexed by k = 1, . . . ,K  is 
so short that nonlinearity of gk(x0) is negligible (or 
weak);

 (II) the deviations, x
(n)
0,m − x̄0,m ( n = 1, . . . ,N ) in 

Eq. (4), are small enough.
For the first requirement, we discuss the nonlinearity 

of our dynamo model using the error growth rate (Hulot 
et  al. 2010) in “Nonlinearity of the numerical geody-
namo” section later, while we see that ensembles shrink-
ing through iterations meet the second requirement in 
“Numerical experiments” section. From Eqs. (2) and (6), 
we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. "is 
cost function is minimized provided that:

"e (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. "e first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
"is iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
!

X0,m and ŵm.
At the final (5th is chosen in this study) iteration, we 

also estimate the bias and trend components which cor-
respond to model error in the dynamo model, by mini-
mizing the following function:
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Ĵm(w) =
σ 2
m

2
wTw +

1

2

K
∑

k=1

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw

]T

R
−1
k

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw

]

,

(8)
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(9)x̄0,m+1 = x̄0,m +
!

X0,mŵm,

where b denotes the bias component, while a is the coef-
ficient for the trend component. "e bias and trend terms 
correspond to the offset and the linear departure in time 
between the observation and the model, respectively. 
Here, we assume that the observation is mostly explained 
by the dynamo model output and that the bias and trend 
components are minor. We thus select Pa and Pb as:

Large norms of P−1
b  and P−1

a  suppress intensities of b 
and a while minimizing Eq.  (10). w, b,a that minimize 
Ĵm(w, b,a) in Eq. (10) can be obtained in a similar manner 
to Eq. (8) (see Appendix B for details). "e minimization of 
Eq.  (10) gives the approximate minimum of the following 
cost function:

"e final estimate and prediction are obtained by the fol-
lowing equation:

where M indicates the final step, i.e., M = 5 , and ŵM , b̂ 
and â are solutions to Eq.  (10). "en we can obtain the 
final estimate of Eq.  (13) by the sum of a single MHD 
simulation starting from x̄0,M , the weighted sum of the 
Mth ensemble members, and the trend and bias terms. 
Note that we can use Eq. (13) not only for the final esti-
mate within the assimilation window, but also for the 
estimate in the forecast period outside the assimilation 
window when the future extensions of gk

(

x̄0,M
)

 and 
gk

(

x
(n)
0,M

)

 , (K < k) , are available, which requires only 
additional dynamo runs for gk

(

x̄0,M
)

 and all the ensem-
ble members. Figure  1 shows how to prepare an SV 
model for IGRF-13 by our assimilation scheme and 
Eq.  (13), where the future extensions of the ensemble 
members (the gray area after “Release of IGRF”) generate 
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Γ k ,MŵM + b̂ + kâ,

トレンド

バイアス

最小化する目的関数：

Page 4 of 24Minami et al. Earth, Planets and Space          (2020) 72:136 

approximation Eq. (3) (and resulting Eq. (6)) imposes us 
on two requirements:

 (I) the assimilation window indexed by k = 1, . . . ,K  is 
so short that nonlinearity of gk(x0) is negligible (or 
weak);

 (II) the deviations, x
(n)
0,m − x̄0,m ( n = 1, . . . ,N ) in 

Eq. (4), are small enough.
For the first requirement, we discuss the nonlinearity 

of our dynamo model using the error growth rate (Hulot 
et  al. 2010) in “Nonlinearity of the numerical geody-
namo” section later, while we see that ensembles shrink-
ing through iterations meet the second requirement in 
“Numerical experiments” section. From Eqs. (2) and (6), 
we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. "is 
cost function is minimized provided that:

"e (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. "e first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
"is iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
!

X0,m and ŵm.
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ŵm =

(

∑

k

[

!

"
T

k ,mR
−1
k

!

"k ,m

]

+ σ 2
mI

)−1

∑

k

(

!

"
T

k ,mR
−1
k

[

yk − gk
(

x̄0,m
)]

)

.

(9)x̄0,m+1 = x̄0,m +
!

X0,mŵm,
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Appendix A: Renewal of the ensemble members
After obtaining the optimum initial condition, x̄0,m+1 , by;

a set of initial conditions, 
{

x
(1)
0,m+1 · · · x

(N )
0,m+1

}

 , are neces-
sary to perform MHD dynamo simulations to generate 
the ( m+ 1)th ensemble members. !is can be achieved 
in a similar manner to the ensemble transform Kalman 
filter (Bishop et al. 2001);

where

A set of initial conditions for the ( m+ 1)th ensemble 
members are obtained by:

(44)x̄0,m+1 = x̄0,m +
!

X0,mŵm,

(45)!

X0,m+1 =
!

X0,mTm,

(46)Tm =

(

∑

k=1

[

!

Γ
T

k ,mR
−1
k

!

Γ k ,m

]

+ σ 2
mI

)− 1
2

.

By this procedure, the ensemble gets shrunk so that the 
linear approximation (Eq. 3) holds better than in the previ-
ous step.

Appendix B: How to obtain w, a,b that minimize 
Ĵm(w,b, a) in Eq. (10)
Equation (9) can be written as

Defining the following:

Ĵm can be regarded as a function of w∗ . !e function Ĵm 
is minimized at

Appendix C: Conversion of dimensional core "ow 
into non-dimensional one
Fluid flow near the CMB is derived from the MCM3 
model by using physical parameters correspond-
ing to the actual core. On the other hand, dimension-
less parameters are given in numerical MHD dynamo 
models. Hence, for data assimilation using geodynamo 
model outputs, core surface flows must be determined 
not by using actual physical parameters, but by those 
for numerical dynamos. In this study, we use dimen-
sionless parameters given as follows: the Ekman num-
ber, E = ν/2Ω(roc − ric)

2 = 3× 10−5 , and the magnetic 
Prandtl number, Pm = ν/η = 2 , where ν is the kinematic 
viscosity of the core fluid, Ω is the rotation rate of the 
mantle, roc = 3485km is the radius of the outer core, 
ric = 0.35× roc = 1220 km is the radius of the inner core, 
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section), we summarize this study (“Discussion and con-
clusions” section).

Method
Our intent is to forecast SV by performing the 4DEnVar 
data assimilation using a numerical geodynamo code and 
existing data with respect to the poloidal scalar potential 
of the geomagnetic field at the core–mantle boundary 
(CMB) and the toroidal and poloidal components of the 
core surface flow. From the variational data assimilation 
experiments with an inertia-free MHD dynamo model, Li 
et al. (2014) found that the magnetic field below the CMB 
is hard to reconstruct only from the magnetic data taken 
outside the core due to the diffusion-dominant Ekman 
boundary layer. In agreement with their proposal, we 
use the preliminary estimated core surface flow as part 
of observation vectors in our data assimilation as well as 
the geomagnetic data. Inclusion of the core surface flow 
in data vectors results in indirect inclusion of SV data in 
the data assimilation.

In this section, we first describe the assimilation theory 
(“Data assimilation theory” section) and details of our 
dynamo model and how to adjust dimensionless time 
to the actual time (“Geodynamo simulation: parameters 
and scaling of time” section). We then briefly discuss 
the nonlinearity of our dynamo model (“Nonlinearity of 
the numerical geodynamo: error growth e-folding time” 
section). Next, we explain details of preparation of the 
observational data and how to convert dimensionless 
simulation outputs to variables comparable to real data 
(“Data 1: poloidal scalar potential at the CMB obtained 
from the MCM model” section and “Data 2: core surface 
flow” section) and finally describe the way of practical 
implementation of the data assimilation (“Implementa-
tion of assimilation” section).

Data assimilation theory
We consider the minimization of the following cost 
function:

where xk is the state vector of a dynamo model at time 
tk , yk denotes the observation vector, Rk is the covari-
ance matrix of observation noise, and hk is an obser-
vation operator which converts a state vector xk to 
observable variables for the comparison with yk . Given 
the dynamo model, xk is uniquely determined from the 
initial state x0 . #is allows us to represent xk as a func-
tion of x0 , that is, xk = f k(x0) . Defining a function gk as 

(1)

V (x0) =
1

2

K
∑

k=1

[

yk − hk(xk)
]T
R
−1
k

[

yk − hk(xk)
]

,

gk(x0) = hk
(

f k(x0)
)

 , the cost function in Eq. (1) can be 
rewritten as follows:

#e minimization of this cost function is achieved by 
an iterative algorithm based on the 4DEnVar method (Liu 
et al. 2008). At the m th iteration, we approximate the cost 
function by using an ensemble of the simulation outputs 
{

x
(1)
0:K ,m . . . , x(N )

0:K ,m

}

 , where N  is the size of ensemble and 
x
(n)
0:K ,m, n ∈ {1, . . . ,N } is the sequence of vectors 

x
(n)
0,m, x

(n)
1,m, . . . , x

(n)
K ,m . #is ensemble is calculated by MHD 

dynamo simulations from the initial conditions 
{

x
(1)
0,m, . . . , x

(N )
0,m

}

 , which are prepared so that the ensem-
ble mean, 

(

ΣN
n=1x

(n)
0,m

)

/N  , is equal to the m th estimate 
x̄0,m . At the m th iteration, we seek x0 that minimizes 
Eq. (2), which turns out to be x̄0,m+1 , with given x̄0,m and 
{

x
(1)
0:K ,m, . . . , x

(N )
0:K ,m

}

 . As an important first step of the 
4DEnVar, we express gk(x0) in terms of the first-order 
Taylor expansion,

where Gk is the Jacobian of gk at x̄0,m . We then approxi-
mate x0 as a weighted sum of the ensemble members. 
Now we define the following matrices 

!

X0,m and Γ̂k ,m for 
convenience:

#is allows us to write x0 = x̄0,m +
!

X0,mw , where w 
consists of weight for each ensemble member. x̄0,m is the 
mean of x(n)0,m(n = 1, . . . ,N ) . Using Eqs.  (4) and (5), the 
function gk(x0) in Eq. (3) can then be expressed:

Note here that the Jacobian Gk disappears in the 
expression of gk(x0) with the aid of the relationship 
derived from Eq.  (3), gk

(
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Equation (6) allows us to circumvent direct calculation of 
the Jacobian Gk . On the other hand, the linear 
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+
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観測差分ベクトル行列：

初期値を更新して、
アンサンブルを再計算
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section), we summarize this study (“Discussion and con-
clusions” section).

Method
Our intent is to forecast SV by performing the 4DEnVar 
data assimilation using a numerical geodynamo code and 
existing data with respect to the poloidal scalar potential 
of the geomagnetic field at the core–mantle boundary 
(CMB) and the toroidal and poloidal components of the 
core surface flow. From the variational data assimilation 
experiments with an inertia-free MHD dynamo model, Li 
et al. (2014) found that the magnetic field below the CMB 
is hard to reconstruct only from the magnetic data taken 
outside the core due to the diffusion-dominant Ekman 
boundary layer. In agreement with their proposal, we 
use the preliminary estimated core surface flow as part 
of observation vectors in our data assimilation as well as 
the geomagnetic data. Inclusion of the core surface flow 
in data vectors results in indirect inclusion of SV data in 
the data assimilation.

In this section, we first describe the assimilation theory 
(“Data assimilation theory” section) and details of our 
dynamo model and how to adjust dimensionless time 
to the actual time (“Geodynamo simulation: parameters 
and scaling of time” section). We then briefly discuss 
the nonlinearity of our dynamo model (“Nonlinearity of 
the numerical geodynamo: error growth e-folding time” 
section). Next, we explain details of preparation of the 
observational data and how to convert dimensionless 
simulation outputs to variables comparable to real data 
(“Data 1: poloidal scalar potential at the CMB obtained 
from the MCM model” section and “Data 2: core surface 
flow” section) and finally describe the way of practical 
implementation of the data assimilation (“Implementa-
tion of assimilation” section).

Data assimilation theory
We consider the minimization of the following cost 
function:

where xk is the state vector of a dynamo model at time 
tk , yk denotes the observation vector, Rk is the covari-
ance matrix of observation noise, and hk is an obser-
vation operator which converts a state vector xk to 
observable variables for the comparison with yk . Given 
the dynamo model, xk is uniquely determined from the 
initial state x0 . #is allows us to represent xk as a func-
tion of x0 , that is, xk = f k(x0) . Defining a function gk as 
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 , the cost function in Eq. (1) can be 
rewritten as follows:

#e minimization of this cost function is achieved by 
an iterative algorithm based on the 4DEnVar method (Liu 
et al. 2008). At the m th iteration, we approximate the cost 
function by using an ensemble of the simulation outputs 
{
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0:K ,m, n ∈ {1, . . . ,N } is the sequence of vectors 
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/N  , is equal to the m th estimate 
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Eq. (2), which turns out to be x̄0,m+1 , with given x̄0,m and 
{
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 . As an important first step of the 
4DEnVar, we express gk(x0) in terms of the first-order 
Taylor expansion,

where Gk is the Jacobian of gk at x̄0,m . We then approxi-
mate x0 as a weighted sum of the ensemble members. 
Now we define the following matrices 
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X0,m and Γ̂k ,m for 
convenience:

#is allows us to write x0 = x̄0,m +
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X0,mw , where w 
consists of weight for each ensemble member. x̄0,m is the 
mean of x(n)0,m(n = 1, . . . ,N ) . Using Eqs.  (4) and (5), the 
function gk(x0) in Eq. (3) can then be expressed:

Note here that the Jacobian Gk disappears in the 
expression of gk(x0) with the aid of the relationship 
derived from Eq.  (3), gk
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Equation (6) allows us to circumvent direct calculation of 
the Jacobian Gk . On the other hand, the linear 
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n番目アンサンブルメンバー

! = # (final iteration)
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Γ̆k,m ≈ ∂gk

∂x0
(x(n)

0,m − x̄0,m)

データベクトルの構成

データベクトル
コアマントル境界の磁場ポロイダル成分

コアマントル境界直下の速度場ポロイダル成分
コアマントル境界直下の速度場トロイダル成分

目的関数

 : 時刻インデックス


(0.25 年間隔)

k

データ分散共分散行列

磁場データは全球モデルから（MCM model; Ropp et al. 2020).

速度場データは、MCM modelを基にMatsushima (2020)の手法で作成

磁場データがすでに時間的に平滑化されているの
で、時間的に変化しない共分散行列を用いる.

（いずれも球面調和関数の次数14まで）

最小化する目的関数：
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approximation Eq. (3) (and resulting Eq. (6)) imposes us 
on two requirements:

 (I) the assimilation window indexed by k = 1, . . . ,K  is 
so short that nonlinearity of gk(x0) is negligible (or 
weak);

 (II) the deviations, x
(n)
0,m − x̄0,m ( n = 1, . . . ,N ) in 

Eq. (4), are small enough.
For the first requirement, we discuss the nonlinearity 

of our dynamo model using the error growth rate (Hulot 
et  al. 2010) in “Nonlinearity of the numerical geody-
namo” section later, while we see that ensembles shrink-
ing through iterations meet the second requirement in 
“Numerical experiments” section. From Eqs. (2) and (6), 
we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. "is 
cost function is minimized provided that:

"e (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. "e first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
"is iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
!

X0,m and ŵm.
At the final (5th is chosen in this study) iteration, we 

also estimate the bias and trend components which cor-
respond to model error in the dynamo model, by mini-
mizing the following function:

(7)
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2
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1
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"
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"k ,m
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"
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k
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x̄0,m
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)

.

(9)x̄0,m+1 = x̄0,m +
!

X0,mŵm,

where b denotes the bias component, while a is the coef-
ficient for the trend component. "e bias and trend terms 
correspond to the offset and the linear departure in time 
between the observation and the model, respectively. 
Here, we assume that the observation is mostly explained 
by the dynamo model output and that the bias and trend 
components are minor. We thus select Pa and Pb as:

Large norms of P−1
b  and P−1

a  suppress intensities of b 
and a while minimizing Eq.  (10). w, b,a that minimize 
Ĵm(w, b,a) in Eq. (10) can be obtained in a similar manner 
to Eq. (8) (see Appendix B for details). "e minimization of 
Eq.  (10) gives the approximate minimum of the following 
cost function:

"e final estimate and prediction are obtained by the fol-
lowing equation:

where M indicates the final step, i.e., M = 5 , and ŵM , b̂ 
and â are solutions to Eq.  (10). "en we can obtain the 
final estimate of Eq.  (13) by the sum of a single MHD 
simulation starting from x̄0,M , the weighted sum of the 
Mth ensemble members, and the trend and bias terms. 
Note that we can use Eq. (13) not only for the final esti-
mate within the assimilation window, but also for the 
estimate in the forecast period outside the assimilation 
window when the future extensions of gk

(

x̄0,M
)

 and 
gk

(

x
(n)
0,M

)

 , (K < k) , are available, which requires only 
additional dynamo runs for gk

(

x̄0,M
)

 and all the ensem-
ble members. Figure  1 shows how to prepare an SV 
model for IGRF-13 by our assimilation scheme and 
Eq.  (13), where the future extensions of the ensemble 
members (the gray area after “Release of IGRF”) generate 
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(11)Pa = Pb = 10−4
Rk .

(12)

V (x0) =
1

2

K
∑

k=1

[

yk − gk(x0)− b − ka
]T

R
−1
k

[

yk − gk(x0)− b − ka
]

.
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implemented in a problem of convection-driven dynamo in spherical shell geometry.
In this article, we have developed a code ‘‘MHD-CCD’’ to simulate thermal convection
and dynamo action in a rotating spherical shell employing a three-point CCDS in the
radial direction, while spherical harmonic expansion is conventionally used in the
angular direction. To examine accuracy of the scheme, Case 0 (non-magnetic
convection) and Case 1 (dynamo) of dynamo benchmark (Christensen et al. 2001)
are run and then, results are compared with the standard solution and other numerical
codes. Mathematical formulation is briefly described in section 2. Numerical method
and the CCDS are explained in section 3. Results are given in section 4. Finally,
conclusions and discussion on future prospects are given in section 5.

2. Mathematical model

We consider a model adopted for the dynamo benchmark (Christensen et al. 2001).
A spherical shell filled with an electrically conducting Boussinesq fluid rotates aligned
with an angular velocity ! around the z-axis. The outer radius of the shell is ro and the
inner radius ri. Convection is driven thermally by fixing temperature contrast at "T
between the two boundaries. The self-gravitational field varies linearly with the distance
from the center of the shell. In spherical coordinates, the non-dimensional governing
equations for the velocity field u, the magnetic field B and the temperature T are given
as follows:

E
@u

@t
! u" ð=" uÞ ! =2u

! "
¼! =pþ 2u" ez þRaT

r

ro

þ Pm!1ð=" BÞ " B, ð1aÞ
@B

@t
¼ Pm!1=2Bþ =" ðu" BÞ, ð1bÞ

@T

@t
¼ !u '=ðTþ T Þ þ Pr!1r2T, ð1cÞ

= 'B ¼ = ' u ¼ 0, ð1dÞ

where, T and p represent deviations from the static reference state of temperature T and
hydrostatic equilibrium of pressure, respectively. Non-dimensionalization is performed
using scalings of length by the shell thickness D¼ ro! ri, time by D2/!, velocity by !/D,
magnetic field by ("#$!)1/2, temperature by "T, and pressure by "!!, where !, $, #,
and " are the kinematic viscosity, the magnetic diffusivity, magnetic permeability in free
space, and the fluid density, respectively. The non-dimensional radii of the shell are
ri¼ 7/13 and ro¼ 20/13. The reference temperature is T ¼ !ri þ riro=r.

The non-dimensional numbers are given by the modified Rayleigh number Ra,
Ekman number E, magnetic Prandtl number Pm, and Prandtl number Pr:

Ra ¼ %go"TD

!!
, E ¼ !

!D2
, Pm ¼ !

$
, Pr ¼ !

&
, ð2Þ

where %, go and & are the thermal expansion rate, gravitational acceleration at the outer
boundary, and thermal diffusivity, respectively. Note that the definition of E is different
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Prandtl number: *' =
#
4 = 0.1

数値ダイナモの支配方程式

数値ダイナモで使用したパラメタ:

!! !"

Earth‘s outer core

D

使用した数値ダイナモとパラメタ 
          (Takahashi 2012; 2014)

実際の地球の値

Pm = %(10−6)
E = %(10−15)

Ω = 7.29 × 10−5 [s−1]
ν ≈ 10−6 [m2/s]

η ≈ 1 [m2/s]Pr = 0.1 to 1

Ra =  unknown 

κ ≈ 1 [m2/s]

known
D = 2265[km]

(e.g. Hulot et al. 2010)

α
g0

ν
η
κ

Ω

T

T̄
ΔT

熱膨張率

CMBにおける重力加速度

動粘性率

磁気拡散率

熱拡散係数

u
B

温度

速度

磁場

自転角速度

参照温度

規格化された温度

p 圧力

数値ダイナモの時間スケーリング

scale Dohm directly, but rather scale the magnetic dissipation time:

tdiss ¼ Emag=Dohm / l 2B=2h ð2Þ
For our models we solve the full magnetohydrodynamic equations
without hyperdiffusivities for an incompressible fluid in a rotating
spherical shell11. The magnetic fields are dipole-dominated, mostly
with stable polarity. We include one case with dipole reversals
similar to those in the geomagnetic field12.
A large-scale magnetic field is converted by nonlinear interaction

with the flow field to small scales where it is dissipated. The
important parameter for this process is the magnetic Reynolds
number Rm ¼ UR/h, with the r.m.s. velocity U. In Fig. 1a we plot
magnetic dissipation time versus Rm and find a simple fit of the
form:

tdiss=tdipole ¼ 1:74Rm21 ð3Þ
Here we normalize with the dipole decay time, tdipole ¼ R2/(p2h),
for a full sphere, which is the longest possible time constant for
decay of a magnetic field in a stagnant conductor. Cases with lower
magnetic Prandtl number (darker shading in Fig. 1a) tend to plot
below the fitting line, and those with higher Pm tend to fall above
the line. This suggests an additional dependence on Pm, or
expressed differently, on the hydrodynamic Reynolds number
Re ¼ Rm/Pm. A best fit of the form:

tdiss=tdipole ¼ aðRm RebÞc ð4Þ
with a ¼ 3.58, b ¼ 1/6 and c ¼ 20.97, reduces the scatter some-
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In order to resolve this question, we analyse the ohmic dissipation

of the Karlsruhe laboratory dynamo6,13, where liquid sodium is
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nearly homogeneously conducting cylinder. Here the hydro-
dynamic Reynolds number is 2.5 £ 105, based on the size of the
largest possible turbulent eddies, and the magnetic Prandtl number
is 9 £ 10–6, whereas in the models Re , 500 and Pm $ 0.15. When
the flow rate exceeds a threshold, dynamo action sets in and a sharp
rise in the driving pressure drop can be used to calculate the ohmic
dissipation (Fig. 2). In order to calculate tdiss, the magnetic energy
must be known. We obtain this energy by fitting the magnetic field
of a dedicated kinematic dynamo simulation to field measurements
performed along the cylinder axis and outside the sodium. A
simpler version of this model predicted successfully the onset of
dynamo action14. Finally, we normalize tdiss with the numerically
calculated dipole decay time tdipole ¼ 0.79 s. The result, marked by
an asterisk in Fig. 1, agrees well with the simple scaling on the
magnetic Reynolds number alone. The additional dependence on
the hydrodynamic Reynolds number under-predicts the dissipation
time by a factor of 2.5 (Fig. 1b), which is far outside the estimated
uncertainty for the experimental value of 40% and the 3j limit of
the fit to the numerical results. A dependence of tdiss on Remight be
plausible, because the small eddies that occur in the flow at high Re

Figure 2 Pressure drop versus flow rate in the Karlsruhe dynamo experiment. Three

independent pumps send sodium through disjoint flow loops, two of which are designated

as ‘helical’ and one as ‘axial’ because of the shape of the path followed by the flow. The

cylinder formed by the pipes has a radius R ¼ 0.95m and similar height. Triangles show

the pressure dropDp in the helical loops, and circles that in the axial loop versus flow rate

Q helical in the helical loops. The flow in the axial loop is held constant at 112.5m3 h21.

Above the onset of dynamo action at Q helical < 100m3 h21, the ohmic dissipation is

calculated as Dohm ¼ SQi ðDpi 2Dpvi ), where the summation is over the three loops.

The contribution of viscous friction to the pressure drop Dp v is obtained by

extrapolating Dp from below the threshold of dynamo action. We extrapolate (interpolate)

the data to a reference state with Q ¼ 111m3 h21 in all three loops, for which the

magnetic field was measured inside the cylinder without recording the pressure drop.

Figure 3 Secular variation time scaling. a, Timescale tn of secular variation as function of
spherical harmonic degree n for the geomagnetic field in the time interval 1840–1990

and, as an example, for the long-term average of the reversing dynamo model. The model

data are scaled to real time with t dipole ¼ 29,000 yr, obtained for an electrical

conductivity j ¼ m0/h ¼ 6 £ 105 Sm21 in the core20. Fitting lines of the form

t n ¼ t sec /n are included. b, Secular variation timescales tsec of the dynamo models
versus magnetic Reynolds number. The fitting line is tsec /tdipole ¼ 21.7 Rm21. The

dotted horizontal line indicates the Earth value estimated from the fit in a, 535 yr in
physical units. The predicted Rm < 1,200 agrees well with the value obtain from

estimates of U ¼ 12–15 km yr21 obtained by inverting geomagnetic secular variations

for the fluid flow near the core surface21.
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[1] The knowledge of the spatial power spectra of the main
geomagnetic field and of its secular variation makes it possi-
ble to define typical timescales tn for each spherical harmonic
degree n. Investigating both observations and numerical
dynamos, we show that a one‐parameter law of the form
tn = tSV/n is satisfied for the non‐dipole field, given the
statistical way the observed tn are expected to fluctuate.
Consequently, we determine the corresponding secular‐
variation timescale tSV from either instantaneous or time‐
averaged spectra, leading to a value of 415 ±45

55 yr for recent
satellite field models. In the broader context of geomagnetic
data assimilation, tSV could provide a sensible and conve-
nient means to rescale the time axis of dynamo simulations.
Citation: Lhuillier, F., A. Fournier, G. Hulot, and J. Aubert
(2011), The geomagnetic secular‐variation timescale in observa-
tions and numerical dynamo models, Geophys. Res. Lett., 38,
L09306, doi:10.1029/2011GL047356.

1. Introduction

[2] Considering the main magnetic field at the Earth’s
surface, it is possible to define the mean square field due to
all spherical harmonic terms of degree n [Mauersberger,
1956; Lowes, 1966],

Rn ¼ nþ 1ð Þ
Xn

m¼0

gmn
! "2 þ hmn

! "2h i
; ð1Þ

where {gn
m, hn

m} are the Gauss coefficients of spherical har-
monic degree n and order m normalised according to the
convention of Schmidt.
[3] Analogous quantities can also be defined for the rate

of change of the field [Lowes, 1974],

Qn ¼ nþ 1ð Þ
Xn

m¼0

_gmn
! "2 þ _hmn

! "2h i
; ð2Þ

where { _gn
m, _hn

m} are the time derivatives of the Gauss
coefficients. The graphical representations of Rn and Qn as a
function of n are known as the spatial power spectra of the
field and of its secular variation.
[4] For each spherical harmonic degree n, it is then possible

to define the following timescales [Stacey, 1992, p. 355],

!n ¼

ffiffiffiffiffiffi
Rn

Qn

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m¼0 gmn

! "2 þ hmn
! "2h i

Pn
m¼0 _gmn

! "2 þ _hmn
! "2h i

vuuut ; ð3Þ

which characterise the dynamics of the main field, indepen-
dently of the distance from which it is observed. They are
defined here in terms of instantaneous values, but a definition
based on averaged values,

!n ¼

ffiffiffiffiffiffiffiffiffiffi
Rnh i
Qnh i

s

; ð4Þ

where the brackets hi denote time averaging, has also been
used [Christensen and Tilgner, 2004]. Several ways of
interpreting these timescales have been proposed. In partic-
ular they can be interpreted as reorganisation times [Stacey,
1992], in which case they are given a phenomenological
interpretation. They can also be interpreted as correlation
times [Hulot and Le Mouël, 1994], in which case they are
given a statistical interpretation. They measure how long it
would take for the field at spherical harmonic degree n to be
completely renewed.
[5] These timescales are known to decrease with increasing

spherical harmonic degree n, but the exact dependence of
tn with respect to n is still a matter of debate. A two‐
parameter law of the form tn = d × n−g has on the one hand
been assumed for recent satellite data [Holme and Olsen,
2006; Olsen et al., 2006; Lesur et al., 2008; Hulot et al.,
2010a], where the least‐squares estimate of the exponent
g varies between 1.32 and 1.45, depending on the epoch
and the range of spherical harmonic degrees considered for
the fit. A simpler one‐parameter law of the form tn = tSV/n
has on the other hand been proposed for dynamo solutions
[Christensen and Tilgner, 2004], where tSV is the so‐called
secular‐variation timescale.
[6] In this letter, we test the relevance of the simpler one‐

parameter law, investigating both observations and numeri-
cal dynamos. We explore to what extent such an inverse
linear law is acceptable given the way the observed tn are
expected to fluctuate, and discuss why this one‐parameter
law can be satisfactorily used in contrast to a more general
two‐parameter power law. We finally contemplate the pos-
sibility of using the secular‐variation timescale as a means to
rescale the time axis of dynamo simulations, in the prospect
of comparing numerical predictions with data.

2. Method

[7] To address the above questions, one needs to resort to
a statistical description of the geomagnetic field. One such
description is provided by the stationary isotropic statistical
(SIS) model of the geomagnetic field proposed by Hulot and
Le Mouël [1994]. It assumes that the set {gn

m, hn
m} consists of

independent stationary Gaussian processes with zero mean
and variance sn2. Under this assumption, the time derivatives
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Université Paris Diderot, INSU/CNRS, UMR 7154, Paris, France.

Copyright 2011 by the American Geophysical Union.
0094‐8276/11/2011GL047356

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L09306, doi:10.1029/2011GL047356, 2011

L09306 1 of 5

The geomagnetic secular‐variation timescale in observations
and numerical dynamo models

Florian Lhuillier,1 Alexandre Fournier,1 Gauthier Hulot,1 and Julien Aubert1

Received 3 March 2011; accepted 29 March 2011; published 5 May 2011.

[1] The knowledge of the spatial power spectra of the main
geomagnetic field and of its secular variation makes it possi-
ble to define typical timescales tn for each spherical harmonic
degree n. Investigating both observations and numerical
dynamos, we show that a one‐parameter law of the form
tn = tSV/n is satisfied for the non‐dipole field, given the
statistical way the observed tn are expected to fluctuate.
Consequently, we determine the corresponding secular‐
variation timescale tSV from either instantaneous or time‐
averaged spectra, leading to a value of 415 ±45

55 yr for recent
satellite field models. In the broader context of geomagnetic
data assimilation, tSV could provide a sensible and conve-
nient means to rescale the time axis of dynamo simulations.
Citation: Lhuillier, F., A. Fournier, G. Hulot, and J. Aubert
(2011), The geomagnetic secular‐variation timescale in observa-
tions and numerical dynamo models, Geophys. Res. Lett., 38,
L09306, doi:10.1029/2011GL047356.

1. Introduction

[2] Considering the main magnetic field at the Earth’s
surface, it is possible to define the mean square field due to
all spherical harmonic terms of degree n [Mauersberger,
1956; Lowes, 1966],

Rn ¼ nþ 1ð Þ
Xn

m¼0

gmn
! "2 þ hmn

! "2h i
; ð1Þ

where {gn
m, hn

m} are the Gauss coefficients of spherical har-
monic degree n and order m normalised according to the
convention of Schmidt.
[3] Analogous quantities can also be defined for the rate

of change of the field [Lowes, 1974],

Qn ¼ nþ 1ð Þ
Xn

m¼0

_gmn
! "2 þ _hmn

! "2h i
; ð2Þ

where { _gn
m, _hn

m} are the time derivatives of the Gauss
coefficients. The graphical representations of Rn and Qn as a
function of n are known as the spatial power spectra of the
field and of its secular variation.
[4] For each spherical harmonic degree n, it is then possible

to define the following timescales [Stacey, 1992, p. 355],

!n ¼

ffiffiffiffiffiffi
Rn

Qn

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m¼0 gmn

! "2 þ hmn
! "2h i

Pn
m¼0 _gmn

! "2 þ _hmn
! "2h i

vuuut ; ð3Þ

which characterise the dynamics of the main field, indepen-
dently of the distance from which it is observed. They are
defined here in terms of instantaneous values, but a definition
based on averaged values,

!n ¼

ffiffiffiffiffiffiffiffiffiffi
Rnh i
Qnh i

s

; ð4Þ

where the brackets hi denote time averaging, has also been
used [Christensen and Tilgner, 2004]. Several ways of
interpreting these timescales have been proposed. In partic-
ular they can be interpreted as reorganisation times [Stacey,
1992], in which case they are given a phenomenological
interpretation. They can also be interpreted as correlation
times [Hulot and Le Mouël, 1994], in which case they are
given a statistical interpretation. They measure how long it
would take for the field at spherical harmonic degree n to be
completely renewed.
[5] These timescales are known to decrease with increasing

spherical harmonic degree n, but the exact dependence of
tn with respect to n is still a matter of debate. A two‐
parameter law of the form tn = d × n−g has on the one hand
been assumed for recent satellite data [Holme and Olsen,
2006; Olsen et al., 2006; Lesur et al., 2008; Hulot et al.,
2010a], where the least‐squares estimate of the exponent
g varies between 1.32 and 1.45, depending on the epoch
and the range of spherical harmonic degrees considered for
the fit. A simpler one‐parameter law of the form tn = tSV/n
has on the other hand been proposed for dynamo solutions
[Christensen and Tilgner, 2004], where tSV is the so‐called
secular‐variation timescale.
[6] In this letter, we test the relevance of the simpler one‐

parameter law, investigating both observations and numeri-
cal dynamos. We explore to what extent such an inverse
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expected to fluctuate, and discuss why this one‐parameter
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approximation Eq. (3) (and resulting Eq. (6)) imposes us 
on two requirements:

 (I) the assimilation window indexed by k = 1, . . . ,K  is 
so short that nonlinearity of gk(x0) is negligible (or 
weak);

 (II) the deviations, x
(n)
0,m − x̄0,m ( n = 1, . . . ,N ) in 

Eq. (4), are small enough.
For the first requirement, we discuss the nonlinearity 

of our dynamo model using the error growth rate (Hulot 
et  al. 2010) in “Nonlinearity of the numerical geody-
namo” section later, while we see that ensembles shrink-
ing through iterations meet the second requirement in 
“Numerical experiments” section. From Eqs. (2) and (6), 
we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. "is 
cost function is minimized provided that:

"e (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. "e first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
"is iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
!

X0,m and ŵm.
At the final (5th is chosen in this study) iteration, we 

also estimate the bias and trend components which cor-
respond to model error in the dynamo model, by mini-
mizing the following function:

(7)

Ĵm(w) =
σ 2
m

2
wTw +

1

2

K
∑

k=1

[

yk − gk
(
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−
"

#k ,mw

]T
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−
"

#k ,mw

]

,

(8)

ŵm =

(

∑

k

[
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"
T

k ,mR
−1
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!

"k ,m

]

+ σ 2
mI

)−1

∑

k

(
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"
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k ,mR
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k

[

yk − gk
(

x̄0,m
)]

)

.

(9)x̄0,m+1 = x̄0,m +
!

X0,mŵm,

where b denotes the bias component, while a is the coef-
ficient for the trend component. "e bias and trend terms 
correspond to the offset and the linear departure in time 
between the observation and the model, respectively. 
Here, we assume that the observation is mostly explained 
by the dynamo model output and that the bias and trend 
components are minor. We thus select Pa and Pb as:

Large norms of P−1
b  and P−1

a  suppress intensities of b 
and a while minimizing Eq.  (10). w, b,a that minimize 
Ĵm(w, b,a) in Eq. (10) can be obtained in a similar manner 
to Eq. (8) (see Appendix B for details). "e minimization of 
Eq.  (10) gives the approximate minimum of the following 
cost function:

"e final estimate and prediction are obtained by the fol-
lowing equation:

where M indicates the final step, i.e., M = 5 , and ŵM , b̂ 
and â are solutions to Eq.  (10). "en we can obtain the 
final estimate of Eq.  (13) by the sum of a single MHD 
simulation starting from x̄0,M , the weighted sum of the 
Mth ensemble members, and the trend and bias terms. 
Note that we can use Eq. (13) not only for the final esti-
mate within the assimilation window, but also for the 
estimate in the forecast period outside the assimilation 
window when the future extensions of gk

(

x̄0,M
)

 and 
gk

(

x
(n)
0,M

)

 , (K < k) , are available, which requires only 
additional dynamo runs for gk

(

x̄0,M
)

 and all the ensem-
ble members. Figure  1 shows how to prepare an SV 
model for IGRF-13 by our assimilation scheme and 
Eq.  (13), where the future extensions of the ensemble 
members (the gray area after “Release of IGRF”) generate 
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(11)Pa = Pb = 10−4
Rk .
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(13)ḡk ,M = gk
(

x̄0,M
)

+
!
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we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. "is 
cost function is minimized provided that:

"e (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. "e first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
"is iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
!

X0,m and ŵm.
At the final (5th is chosen in this study) iteration, we 

also estimate the bias and trend components which cor-
respond to model error in the dynamo model, by mini-
mizing the following function:

(7)

Ĵm(w) =
σ 2
m

2
wTw +

1

2

K
∑

k=1

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw

]T

R
−1
k

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw

]

,

(8)

ŵm =

(

∑

k

[

!

"
T

k ,mR
−1
k

!

"k ,m

]

+ σ 2
mI

)−1

∑

k

(

!

"
T

k ,mR
−1
k

[

yk − gk
(

x̄0,m
)]

)

.

(9)x̄0,m+1 = x̄0,m +
!

X0,mŵm,

where b denotes the bias component, while a is the coef-
ficient for the trend component. "e bias and trend terms 
correspond to the offset and the linear departure in time 
between the observation and the model, respectively. 
Here, we assume that the observation is mostly explained 
by the dynamo model output and that the bias and trend 
components are minor. We thus select Pa and Pb as:

Large norms of P−1
b  and P−1

a  suppress intensities of b 
and a while minimizing Eq.  (10). w, b,a that minimize 
Ĵm(w, b,a) in Eq. (10) can be obtained in a similar manner 
to Eq. (8) (see Appendix B for details). "e minimization of 
Eq.  (10) gives the approximate minimum of the following 
cost function:

"e final estimate and prediction are obtained by the fol-
lowing equation:

where M indicates the final step, i.e., M = 5 , and ŵM , b̂ 
and â are solutions to Eq.  (10). "en we can obtain the 
final estimate of Eq.  (13) by the sum of a single MHD 
simulation starting from x̄0,M , the weighted sum of the 
Mth ensemble members, and the trend and bias terms. 
Note that we can use Eq. (13) not only for the final esti-
mate within the assimilation window, but also for the 
estimate in the forecast period outside the assimilation 
window when the future extensions of gk

(

x̄0,M
)

 and 
gk

(

x
(n)
0,M

)

 , (K < k) , are available, which requires only 
additional dynamo runs for gk

(

x̄0,M
)

 and all the ensem-
ble members. Figure  1 shows how to prepare an SV 
model for IGRF-13 by our assimilation scheme and 
Eq.  (13), where the future extensions of the ensemble 
members (the gray area after “Release of IGRF”) generate 

(10)

Ĵm(w, b,a) =
σ 2
m

2
wTw +

1

2
bTP−1

b b +
1

2
aTP−1

a a

+
1

2

K
∑

k=1

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw − b − ka

]T

× R
−1
k

[

yk − gk
(

x̄0,m
)

−
"

#k ,mw − b − ka

]

,

(11)Pa = Pb = 10−4
Rk .

(12)

V (x0) =
1

2

K
∑

k=1

[

yk − gk(x0)− b − ka
]T

R
−1
k

[

yk − gk(x0)− b − ka
]

.

(13)ḡk ,M = gk
(

x̄0,M
)

+
!

Γ k ,MŵM + b̂ + kâ,
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section), we summarize this study (“Discussion and con-
clusions” section).

Method
Our intent is to forecast SV by performing the 4DEnVar 
data assimilation using a numerical geodynamo code and 
existing data with respect to the poloidal scalar potential 
of the geomagnetic field at the core–mantle boundary 
(CMB) and the toroidal and poloidal components of the 
core surface flow. From the variational data assimilation 
experiments with an inertia-free MHD dynamo model, Li 
et al. (2014) found that the magnetic field below the CMB 
is hard to reconstruct only from the magnetic data taken 
outside the core due to the diffusion-dominant Ekman 
boundary layer. In agreement with their proposal, we 
use the preliminary estimated core surface flow as part 
of observation vectors in our data assimilation as well as 
the geomagnetic data. Inclusion of the core surface flow 
in data vectors results in indirect inclusion of SV data in 
the data assimilation.

In this section, we first describe the assimilation theory 
(“Data assimilation theory” section) and details of our 
dynamo model and how to adjust dimensionless time 
to the actual time (“Geodynamo simulation: parameters 
and scaling of time” section). We then briefly discuss 
the nonlinearity of our dynamo model (“Nonlinearity of 
the numerical geodynamo: error growth e-folding time” 
section). Next, we explain details of preparation of the 
observational data and how to convert dimensionless 
simulation outputs to variables comparable to real data 
(“Data 1: poloidal scalar potential at the CMB obtained 
from the MCM model” section and “Data 2: core surface 
flow” section) and finally describe the way of practical 
implementation of the data assimilation (“Implementa-
tion of assimilation” section).

Data assimilation theory
We consider the minimization of the following cost 
function:

where xk is the state vector of a dynamo model at time 
tk , yk denotes the observation vector, Rk is the covari-
ance matrix of observation noise, and hk is an obser-
vation operator which converts a state vector xk to 
observable variables for the comparison with yk . Given 
the dynamo model, xk is uniquely determined from the 
initial state x0 . #is allows us to represent xk as a func-
tion of x0 , that is, xk = f k(x0) . Defining a function gk as 

(1)

V (x0) =
1

2

K
∑

k=1

[

yk − hk(xk)
]T
R
−1
k

[

yk − hk(xk)
]

,

gk(x0) = hk
(

f k(x0)
)

 , the cost function in Eq. (1) can be 
rewritten as follows:

#e minimization of this cost function is achieved by 
an iterative algorithm based on the 4DEnVar method (Liu 
et al. 2008). At the m th iteration, we approximate the cost 
function by using an ensemble of the simulation outputs 
{

x
(1)
0:K ,m . . . , x(N )

0:K ,m

}

 , where N  is the size of ensemble and 
x
(n)
0:K ,m, n ∈ {1, . . . ,N } is the sequence of vectors 

x
(n)
0,m, x

(n)
1,m, . . . , x

(n)
K ,m . #is ensemble is calculated by MHD 

dynamo simulations from the initial conditions 
{

x
(1)
0,m, . . . , x

(N )
0,m

}

 , which are prepared so that the ensem-
ble mean, 

(

ΣN
n=1x

(n)
0,m

)

/N  , is equal to the m th estimate 
x̄0,m . At the m th iteration, we seek x0 that minimizes 
Eq. (2), which turns out to be x̄0,m+1 , with given x̄0,m and 
{

x
(1)
0:K ,m, . . . , x

(N )
0:K ,m

}

 . As an important first step of the 
4DEnVar, we express gk(x0) in terms of the first-order 
Taylor expansion,

where Gk is the Jacobian of gk at x̄0,m . We then approxi-
mate x0 as a weighted sum of the ensemble members. 
Now we define the following matrices 

!

X0,m and Γ̂k ,m for 
convenience:

#is allows us to write x0 = x̄0,m +
!

X0,mw , where w 
consists of weight for each ensemble member. x̄0,m is the 
mean of x(n)0,m(n = 1, . . . ,N ) . Using Eqs.  (4) and (5), the 
function gk(x0) in Eq. (3) can then be expressed:

Note here that the Jacobian Gk disappears in the 
expression of gk(x0) with the aid of the relationship 
derived from Eq.  (3), gk

(

x
(n)
0,m

)

− gk
(

x̄0,m
)

≈ Gk

gk

(

x
(n)
0,m

)

− gk
(

x̄0,m
)

≈ Gk

(

x
(n)
0,m − x̄0,m

)

, (n = 1, . . . ,N ) . 
Equation (6) allows us to circumvent direct calculation of 
the Jacobian Gk . On the other hand, the linear 

(2)

V (x0) =
1

2

K
∑

k=1

[

yk − gk(x0)
]T
R
−1
k

[

yk − gk(x0)
]

.

(3)gk(x0) ≈ gk
(

x̄0,m
)

+ Gk

(

x0 − x̄0,m
)

,

(4)
!

X0,m =
1

√
N − 1

(

x
(1)
0,m − x̄0,m · · · x(N )

0,m − x̄0,m

)

,

(5)

!

"k ,m =
1

√
N − 1

(

gk

(

x
(1)
0,m

)

−gk
(

x̄0,m
)

· · · gk
(

x
(N )
0,m

)

− gk
(

x̄0,m
)

)

.

(6)
gk(x0) ≈ gk

(

x̄0,m
)

+ Gk

!

X0,mw ≈ gk
(

x̄0,m
)

+
!

"k ,mw.

Ens. wei. sum

MHD, KD

予測手法
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consideration that one can use magnetic data until roughly 
0.50 year before the release epoch for generation of IGRF 
candidate models.

To assess results of our data assimilation and forecasts, 
we use the square root of the data misfit dP (e.g., Whaler 
and Beggan 2015) defined by

where the subscripts “model” and “data” mean that the 
Gauss coefficients come from our data assimilation-fore-
cast procedure and from the observation (the MCM6 
model in this study), respectively. To obtain gml model

 and 
hml model

 in the unit of nT, we use S01ref in Eq. (21). At the 
beginning of the data assimilation, S01ref is set for both the 
observation and the numerical geodynamo, here named 
S01ref_data and S01ref_model . To multiply Sml  from the numeri-
cal geodynamo by the ratio of S01ref_data/S01ref_model gen-
erates dimensional numerical magnetic fields available 
in Eq. (40). To assess the performance of SV forecast, we 
further define

(40)

dP(t) =
LMF
∑

l=1

l
∑

m=0

(l + 1)
[

(

gml model
(t)− gml data

(t)
)2

+
(

hml model
(t)− hml data

(t)
)2
]

,

where !gml release
= gml model(trelease)− gml data(trelease) and 

a similar equation for !hml release
 , and trelease denotes the 

release time of the forecast. dPwo(t) measures dP with-
out the main field offset at the release time and purely 
evaluate the accuracy of SV from the release time. Table 1 
summarizes all the assimilation and forecast settings with 
the results of 

√
dP and 

√
dPwo 4.5 years after the release 

time.

Bias and trend terms
We first explain the effect of the bias and trend terms in 
Eqs.  (10)–(13) on our data assimilation. We introduced 
those trend and bias terms, only in the final iteration and 
only for the magnetic field variations to reduce the data 
misfits. We found that the bias and trend terms represent 
model errors of the dynamo simulation well. Figure  5 
shows three examples of the MHD forecasts with the 
initial condition at k ′ = 0 (Eq. 16): Case O1 for an MHD 
dynamo forecast without bias and trend terms, Case O2 

(41)

dPwo(t) =
LMF
∑

l=1

l
∑

m=0

(l + 1)
[

(

gml model
(t)− gml data

(t)−!gml release

)2

+
(

hml model
(t)− hml data

(t)−!hml release

)2
]

,

Table 1 Summary of the numerical experiments

In calculations of 
√
dP (Eq. 40) and 

√
dPwo  (Eq. 41), the MCM6 model, which covers up to 2019.50, is used as gml data

 and hml data
 . Release times for all cases are assumed 

to be 2014.75, except 2015.00 for IGRF-12. In the “Forecast type” column, k′ = 0 and k′ = K  mean the MHD dynamo or KD simulations running from the optimized 
state vector at 2004.25 and 2014.25, respectively. See text for details of the three forecast types. In the αS and αUW columns, we specify those for the "nal 5th step in 
Eq. 39, where α′ = 14 and α′′ = 7

Italic—Case A4 was found to be the best setting in our numerical experiments

Case code Window length αS αUW

[×30]
T (trend), B (bias) Forecast type

√
dP 4.5 years 

after release [nT]

√
dPwo 4.5 years 

after release 
[nT]

(O1) 10 years α′ 2 no T, B MHD ( k′ = 0) 228.5 168.2

(O2) 10 years α′ 2 only B MHD ( k′ = 0) 212.9 164.0

(A1) 10 years α′ 2 T and B Ens. wei. sum 153.8 129.9

(A2) 10 years α′ 2 T and B MHD ( k′ = 0) 168.2 136.2

(A3) 10 years α′ 2 T and B MHD ( k′ = 0) 155.7 131.5

(A4) 10 years 0.1α′ 2 T and B Ens. wei. sum 100.9 95.1

(A5) 10 years 0.1 α′ 2 T and B MHD ( k′ = 0) 107.8 102.5

(A6) 10 years 0.1 α′ 2 T and B KD ( k′ = 0) 106.3 99.3

(B1) 5 years α′′ 2 T and B Ens. wei. sum 146.8 137.3

(B2) 5 years α′′ 2 T and B MHD ( k′ = 0) 147.6 136.4

(B3) 5 years α′′ 2 T and B MHD ( k′ = 0) 145.7 136.2

(B4) 5 years 0.1α′′ 2 T and B Ens. wei. sum 115.0 111.4

(B5) 5 years 0.1 α′′ 2 T and B MHD ( k′ = 0) 118.7 114.5

(B6) 5 years 0.1 α′′ 2 T and B KD ( k′ = 0) 137.6 134.1

(C1) IGRF-12 96.9 94.7

(C2) Extrapolation using SV of MCM at 2014.25 72.4 73.4

(C3) No SV from 2014.25 442.7 398.9

RMS

misfit

CMB表面流の再現性
Fig. 4 
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IGRF-12との予測精度の比較

• 我々の手法による予測はIGRF-12 と同等
の予測精度を持つ. 

• IGRF-12 候補モデルのいくつかは、
2014.50のデータまで用いている. 

• 我々の予測では、2014.25までのデータ
しか用いていないため, 2014.0の地磁気
ジャークの影響をより強く受けている. 

• この結果は、我々の手法が同化窓の後
に来る地磁気ジャークによるSVの変化
トレンドを捉えられる可能性を示唆して
いる. 

•

IGRF-12 と我々の予測

我々の予測

IGRF-12リリース後の

データも用いて推定した
リリース時SVによる予測

SV = 0

何も予測しな
かった時

dPwo =
13

∑
l=1

l

∑
m=0

(l + 1)[(gm
l model(t) − gm

l data(t) − Δgm
l release)

2]

Fig. 8b

予測結果

Fig. 9

緑線：データ(MCM model)

赤破線：データ同化結果

青線：提出したSVモデル

橙線：MHD計算
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結論
• データ同化手法4DEnVarを用いて2020.0 - 2025.0 の地磁気の予測を行い、IGRF-13
にSVモデルを提出した。 

• MHDシミュレーションの出力を線形化する4DEnVarの手法が、地磁気の将来予測に
効果的であることを示した。 

• バイアス・トレンドの導入により推定精度を向上させ、従来のIGRFと同等の予測精
度が実現できた。 

• 同化期間としては、試した中では10年が最も推定精度が高くなった。（10年より長
い期間は試せていない。） 

• 4DEnVarを用いた手法は現状多くの改善点を残しており、今後の予測精度の向上が
期待できる。 

• IGRFの歴史上初めて、日本からモデルによる貢献を果たすことができた。
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