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Abstract 
The electrical conductivity of the Earth’s core is an important physical parameter that controls the 

core dynamics and the thermal evolution of the Earth. In this article, the effect of core electrical 
conductivity on core surface flow models is investigated. Core surface flow is derived from a 
geomagnetic field model on the presumption that a viscous boundary layer forms at the core–mantle 
boundary. The core electrical conductivity in the range from 105 S m−1 to 107 S m−1 has a limited  
effect on the tangentially geostrophic core flow. The influence of electrical conductivity on the 
tangentially magnetostrophic core flow can be clearly recognized; the magnitude of the mean poloidal 
flow increases with an increase in core electrical conductivity. This arises from the Lorentz force 
proportional to the electrical conductivity. In other words, the Elsasser number, which represents the 
ratio of the Lorentz force to the Coriolis force, has an influence on the difference. The result implies that 
the ratio of toroidal to poloidal flow magnitudes has been changing in accordance with secular changes 
of rotation rate of the Earth and of core electrical conductivity due to a decrease in core temperature 
throughout the thermal evolution of the Earth. 
 
Introduction 

The magnetic field of the Earth is generated by dynamo action in the outer core. One of basic 
equations for magnetohydrodynamic dynamo is the induction equation. The core electrical conductivity, 
𝜎𝜎, is included in the magnetic diffusion term, 𝜂𝜂∇2𝑩𝑩, of the induction equation, where 𝜂𝜂 = (𝜇𝜇0𝜎𝜎)−1 is 
the magnetic diffusivity, 𝜇𝜇0 the magnetic permeability of vacuum, and 𝑩𝑩 the magnetic field. Another 
basic equation is the equation of motion. The core electrical conductivity is also included in the Lorentz 
force term, 𝑱𝑱 × 𝑩𝑩, of the equation of motion, where 𝑱𝑱 = 𝜎𝜎(𝑬𝑬 + 𝑽𝑽 × 𝑩𝑩) is the electric current density, 
𝑬𝑬 the electric field, and 𝑽𝑽 the core flow. Temporal variations of the magnetic field are caused by the 
motional induction and the magnetic diffusion as given by 

   �̇�𝑩 = ∇ × (𝑽𝑽 × 𝑩𝑩) + 𝜂𝜂∇2𝑩𝑩,  
where a dot denotes partial differentiation with respect to time, 𝑡𝑡. Inversely, core fluid motion can be 
estimated from a spatial distribution of the geomagnetic field and its temporal variation (e.g., Holme 
2015). These relationship is schematically shown in Fig. 0. 
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Fig. 0. Schematic view of relationship among effects of motional induction, magnetic diffusion, and 
Lorentz force on the core flow and the geomagnetic field. 
 
Theory and Method 

Most of core surface flow models rely on the frozen-flux approximation (Roberts and Scott 1965), 
where the magnetic diffusion is neglected due to simple comparison between magnitudes of motional 
induction and magnetic diffusion terms. However, a viscous boundary layer should be present at the 
core-mantle boundary (CMB). The magnetic diffusion inside such a boundary layer is found to play an 
important role in temporal variations of the geomagnetic field (Takahashi et al. 2001). Therefore, an 
approach to estimate fluid motion near the CMB has been devised by Matsushima (2015); the magnetic 
diffusion is explicitly incorporated within the viscous boundary layer at the CMB, while the magnetic 
diffusion is neglected below the boundary layer. Matsushima (2015) assumed that fluid motion below 
the boundary layer is tangentially geostrophic, which means that the Lorentz force was not taken into 
account. To examine the effect of core electrical conductivity on a core flow model, fluid motion is 
assumed to be tangentially magnetostrophic below the boundary layer. 

To estimate core flow near the CMB, the radial component of induction equation is solved with the 
magnetostrophic constraint. The equations to be solved are given as follows; 

   �̇�𝑩𝑟𝑟1 = −(𝑽𝑽1 ⋅ ∇)𝐵𝐵𝑟𝑟1 + (𝑩𝑩1 ⋅ ∇)𝑉𝑉𝑟𝑟1 +
𝜂𝜂
𝑟𝑟1
∇2(𝑟𝑟1𝐵𝐵𝑟𝑟1), (1a) 

   �̇�𝑩𝑟𝑟2 = −(𝑽𝑽2 ⋅ ∇)𝐵𝐵𝑟𝑟2 + (𝑩𝑩2 ⋅ ∇)𝑉𝑉𝑟𝑟2, (1b) 

   ∇𝐻𝐻 ⋅ �2Ω cos𝜃𝜃 𝑽𝑽�𝐻𝐻 +
𝜎𝜎𝐵𝐵𝑟𝑟22

𝜌𝜌
𝑽𝑽�𝐻𝐻 × 𝒓𝒓�� = 0, (1c) 

where subscripts 𝑟𝑟 and 𝐻𝐻 denote the radial and horizontal components, respectively, subscripts 1 
and 2 indicate depths from the CMB (assumed to be a spherical surface of radius 𝑟𝑟 = 𝑟𝑟0 = 3480 km) 
as 𝑟𝑟 = 𝑟𝑟1 = 𝑟𝑟0 − 𝜉𝜉1 (inside the boundary layer) and 𝑟𝑟 = 𝑟𝑟2 = 𝑟𝑟0 − 𝜉𝜉2  (below the boundary layer), 
respectively. Ω = 7.29 × 10−5 rad s−1  denotes the angular velocity of the mantle, 𝜌𝜌 = 1.1 ×
104 kg m−3  the mass density of core fluid,  𝒓𝒓�  the radial unit vector, and 𝜃𝜃  the colatitude in the 
spherical coordinates (𝑟𝑟,𝜃𝜃,𝜙𝜙). The horizontal flow, 𝑽𝑽𝐻𝐻, near the core surface can be expressed as 
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   𝑽𝑽𝐻𝐻 = 𝑽𝑽�𝐻𝐻 �1− exp �−
𝜉𝜉
𝛿𝛿𝐸𝐸𝐻𝐻+

� cos�
𝜉𝜉
𝛿𝛿𝐸𝐸𝐻𝐻−

��+ (sgn cos𝜃𝜃)𝒓𝒓� × 𝑽𝑽�𝐻𝐻 exp �−
𝜉𝜉
𝛿𝛿𝐸𝐸𝐻𝐻+

� sin�
𝜉𝜉
𝛿𝛿𝐸𝐸𝐻𝐻−

�, (2) 

where 𝑽𝑽�𝐻𝐻 is the tangentially magnetostrophic flow far below the Ekman-Hartmann boundary layer, 
sgn is the signum function, 

   𝛿𝛿𝐸𝐸𝐻𝐻
± =

𝛿𝛿𝐸𝐸
{(1 + Λ2 4⁄ )1 2⁄ ± Λ 2⁄ }1 2⁄  (3) 

(double sign correspondence), 𝛿𝛿𝐸𝐸 = (𝜈𝜈edd Ω|cos𝜃𝜃|⁄ )1 2⁄ , 𝜈𝜈edd  is the eddy kinematic viscosity 
assumed to be 5 m2 s−1 in this study, and 

   Λ =
𝜎𝜎𝐵𝐵𝑟𝑟2

𝜌𝜌Ω| cos𝜃𝜃 |
 (4) 

is the Elsasser number. The horizontal magnetostrophic flow can be expressed in terms of poloidal and 
toroidal constituents, and their scalar functions, which are expanded into spherical harmonics, are 
calculated. The electrical conductivity of outer core, as a parameter, is investigated in the range from 
𝜎𝜎 = 105 S m−1 to 𝜎𝜎 = 107 S m−1. 
  To obtain a core surface flow model, a geomagnetic field model COV-OBS.x1 (Gillet et al. 2015) is 
adopted. The magnetic field at the CMB is derived through downward continuation of a geomagnetic 
potential field by assuming the mantle to be electrically insulating. The truncation level of spherical 
harmonic coefficients is set at degree 14. 
 
Results 

First, the effect of core electrical conductivity on tangentially geostrophic core flow near the CMB is 
investigated. Correlation coefficients of ∇𝐻𝐻 ⋅ 𝑽𝑽𝐻𝐻  and 𝒓𝒓� ⋅ ∇ × 𝑽𝑽𝐻𝐻 , which correspond to those of the 
poloidal and toroidal components, respectively, are computed between the one for 𝜎𝜎 = 106 S m−1 and 
that for other 𝜎𝜎 in the range between 105 S m−1 and 107 S m−1. The correlation coefficients are 
found to be at least 0.98. The mean velocity over spherical surfaces at 𝑟𝑟 = 𝑟𝑟1 and at 𝑟𝑟 = 𝑟𝑟2 for 𝜎𝜎 =
106 S m−1 is also found to be nearly the same as those for other 𝜎𝜎 in the range between 105 S m−1 
and 107 S m−1. The result implies that core electrical conductivity has a limited effect on core flow 
models through the magnetic diffusion term under the tangentially geostrophic constraint. 

Secondly, the effect of core electrical conductivity on tangentially magnetostrophic flow below the 
boundary layer at the CMB is investigated. Figures 1a-c show fluid motions near the CMB at 𝑟𝑟 = 𝑟𝑟1 
and at 𝑟𝑟 = 𝑟𝑟2 for 𝜎𝜎 = 105 S m−1, 𝜎𝜎 = 106 S m−1, and 𝜎𝜎 = 107 S m−1, respectively, at the epoch of 
2010. Core flows for 𝜎𝜎 = 105 S m−1 are similar to those for 𝜎𝜎 = 106 S m−1, whereas those for 𝜎𝜎 =
107 S m−1 are obviously different from those for 𝜎𝜎 = 106 S m−1. The horizontal divergence for 𝜎𝜎 =
107 S m−1 appears larger than that for 𝜎𝜎 = 106 S m−1. Figure 2 shows the dependence of poloidal and 
toroidal mean-flow magnitudes on the core electrical conductivity. The mean velocity for the toroidal 
component does not vary irrespective of core electrical conductivity, whereas that for the poloidal 
component increases with increasing core electrical conductivity, as found from larger horizontal 
divergence for higher electrical conductivity. 
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Fig. 1. Fluid motion near the core-mantle boundary under the tangentially magnetostrophic constraint. 

Upper and lower figures show fluid motions at 𝑟𝑟 = 𝑟𝑟1  and at 𝑟𝑟 = 𝑟𝑟2 , respectively, for (a) 𝜎𝜎 =
105 S m−1, (b) 𝜎𝜎 = 106 S m−1, and (c) 𝜎𝜎 = 107 S m−1 at the epoch of 2010. Arrows show the 
horizontal flows, and color contours denote upwellings and downwellings given by ∇𝐻𝐻 ⋅ 𝑽𝑽. 

 

    
 
Fig. 2. Mean toroidal and poloidal velocity with respect to the core electrical conductivity. Circles and 

error bars represent means and ±standard deviations, respectively, obtained for COV-OBS.x1 (Gillet 
et al. 2015) ranging from 1880 to 2015, at (a) 𝑟𝑟 = 𝑟𝑟1 and (b) 𝑟𝑟 = 𝑟𝑟2. 

 
Discussion 

To determine the cause of electrical conductivity dependence as above, mean flow velocity is 
examined under the tangentially geostrophic and tangentially magnetostrophic constraints. The ratio of 
the mean toroidal flow to the mean poloidal flow magnitudes at 𝑟𝑟 = 𝑟𝑟2  under the tangentially 
geostrophic constraint is computed for spherical harmonic order 𝑚𝑚 = 1 to 𝑚𝑚 = 6 by minimizing the 
following function, Ψ𝑔𝑔: 

   Ψ𝑔𝑔 = [∇𝐻𝐻 ⋅ (cos𝜃𝜃 𝑽𝑽�𝐻𝐻)]2 + 𝛼𝛼𝑔𝑔 ��(𝑉𝑉�𝜃𝜃2)2 + �𝑉𝑉�𝜙𝜙2�
2� 𝑑𝑑𝑑𝑑, (5) 

where 𝛼𝛼𝑔𝑔  is a controlling parameter. Figure 3 shows the velocity ratio, which is found to be 
approximately 2 for smaller 𝛼𝛼𝑔𝑔. 
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Fig. 3. Control parameter, 𝛼𝛼𝑔𝑔 , dependence of 

toroidal and poloidal mean flow ratios. Circles 
represent the ratio of the mean toroidal flow to 
the mean poloidal flow magnitudes at 𝑟𝑟 = 𝑟𝑟2 
under the tangentially geostrophic constraint, 
for spherical harmonic order 𝑚𝑚 = 1 to 𝑚𝑚 =
6. 

Fig. 4. Control parameter, 𝛼𝛼𝑚𝑚 , dependence of 
toroidal to poloidal mean flow ratios. Circles 
represent the ratio of the mean toroidal to the 
mean poloidal flow magnitudes at 𝑟𝑟 = 𝑟𝑟2 
under the tangentially magnetostrophic 
constraint, for 𝜎𝜎 = 105 S m−1 , 𝜎𝜎 =
106 S m−1, and 𝜎𝜎 = 107 S m−1 at the epoch 
of 2010. 

 
Next, the ratio of the mean toroidal flow to the mean poloidal flow magnitudes under the tangentially 

magnetostrophic constraint is computed by minimizing the function, Ψ𝑚𝑚; 

   Ψ𝑚𝑚 = [∇𝐻𝐻 ⋅ (cos𝜃𝜃 𝑽𝑽�𝐻𝐻 + 𝜌𝜌−1𝜎𝜎𝐵𝐵𝑟𝑟22 𝑽𝑽�𝐻𝐻 × 𝒓𝒓�)]2 + 𝛼𝛼𝑚𝑚 ��(𝑉𝑉�𝜃𝜃2)2 + �𝑉𝑉�𝜙𝜙2�
2� 𝑑𝑑𝑑𝑑, (6) 

where 𝛼𝛼𝑚𝑚  is a controlling parameter. Figure 4 shows the velocity ratio for 𝜎𝜎 = 105 S m−1 , 
106 S m−1, and 107 S m−1. The velocity ratio clearly decreases with increasing 𝜎𝜎, which means that 
the magnitude of mean poloidal flow increases relatively to that of mean toroidal flow. It is likely that 
this result arises from the effect of the Lorentz force proportional to 𝜎𝜎.  

Asari and Lesur (2011) found that the tangentially geostrophic constraint mainly influences the 
poloidal flow, and pointed out that the tangentially magnetostrophic constraint rather mitigates the 
poloidal flow. This may be related with the present result that the magnitude of mean poloidal flow 
increases with increasing core electrical conductivity. 

It should be pointed out that the tangentially magnetostrophic constraint does not depend on core 
electrical conductivity alone, as found in Eq. (1c). The importance of the Lorentz force relative to the 
Coriolis force can be measured by the Elsasser number, Λ, as given by Eq. (4). The rotation rate of the 
Earth has been decreasing due to tidal friction with the Moon. The rotation period is currently 
approximately 24 hours, but it could have been as little as 4−6 hours immediately after the Moon formed 
(e.g., Goldreich 1966). This means that Ω was about six to four times larger than the present value. On 
the other hand, the core temperature has been decreasing since the formation of the core. This implies 
that the core electrical conductivity in the past could have been lower than the present value. In short, 
the rotation rate of the Earth decreases, and the core electrical conductivity increases with time. These 
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indicate that the denominator of Λ = 𝜎𝜎𝐵𝐵𝑟𝑟2 𝜌𝜌Ω| cos𝜃𝜃 |⁄  has been decreasing, and that the numerator of 
Λ has been increasing, throughout the history of the Earth. That is, the Elsasser number, Λ, could have 
been smaller in the past than at present, and Λ will be increasing. This implies that core flow in the past 
could have been more geostrophic than the present flow state, and that the style of magnetic field 
generation by poloidal and toroidal motions in the core has been changing. 
 
Conclusions 
In this article, the effect of core electrical conductivity on core surface flow models was investigated. It 
was found that core electrical conductivity in the range between 105 S m−1 and 107 S m−1 has a 
limited effect on core flow models under the tangentially geostrophic constraint. In contrast, the mean 
poloidal flow increases with an increase of core electrical conductivity under the tangentially 
magnetostrophic constraint. This results from the Lorentz force proportional to core electrical 
conductivity which is likely to be stronger than the Coriolis force. The Elsasser number given by the 
ratio of the Lorentz to Coriolis forces has been increasing throughout the evolution of the Earth, because 
the rotation rate of the Earth has been decreasing and the core electrical conductivity has been increasing 
due to the decrease in core temperature. These results imply that the ratio of the magnitude of mean 
toroidal flow to that of mean poloidal flow has been changing with secular change of the Elsasser 
number; that is, the style of magnetic field generation by poloidal and toroidal flows in the core has been 
changing throughout the evolution of the Earth. 
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