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Abstract

Sasai in 1991 presented analytic formulas for the piezomagnetic �eld associated with a vertical
rectangular fault with strike-slip or tensile fault motion. There appear apparently divergent
terms when we approach fault edges on the ground surface. They are those containing 1/r2,
1/r4 and 1/r6, where r implies the horizontal distance between the observation point and
fault edges. However, we �nd that these terms are convergent to �nite values by combining
appropriate two terms in the Chinnery sum. The Tailor series expansion can be de�ned for
�eld values around the fault edges.

1 Introduction

Sasai (1991) formulated the Green's function method in tectonomagnetic modeling. It was
applied to derive analytic solutions for the piezomagnetic �eld associated with a vertical rect-
angular fault with strike-slip or tensile fault motion. The solutions are given for their magnetic
potentials in the Appendix E in his paper. They are not given here for the sake of brevity.
In his solutions of the magnetic potential are included terms containing 1/r2 and 1/r4, where
r implies the horizontal distance between the observation point and the two fault edges. Dif-
ferentiating potentials, we obtain the piezomagnetic �eld containing 1/r2, 1/r4 and 1/r6. We
call them divergent terms. However, we will �nd that such divergent characteristics are simply
apparent and that they remain �nite at both the fault edges.

2 Chinnery sum

The piezomagnetic potentials for the strike-slip or tensile faulting are given in terms of Chinnery
sum. This notaion was �rst introduced by Chinnery (1961) to represent the displacement �eld
associated with a vertical rectangular strike-slip fault. Each term consists of the combination
of four terms:

{f(x1, x3)} ∥ba = f(L, b) − f(L, a) − f(−L, b) + f(−L, a) (1)

where x1 = ±L indicates the horizontal position of two fault edges and x3 = a and b implies
the depth of the fault top d and the bottom D. In Sasai's solution, D is sometimes replaced
with H (Curie depth), depending on the spatial con�guration of the fault bottom (D) and the
Curie depth (H).
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We use the following relationship among the observation point (x, y, z) and the fault position
(x1, x3):

t = x− x1, r2 = t2 + y2, (2)

p1 = x3 − z, p2 = 2H − x3 − z, p3 = 2H + x3 − z, (3)

S1 =
√
r2 + p21, S2 =

√
r2 + p22, S3 =

√
r2 + p23 (4)

r in eq. (2) tends to be zero when we approach both the fault edges. The potential terms to
produce divergent ones are
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Di�erentiating these potentials, we �nally �nd the following 7 divergent functions in the
piezomagnetic �eld.
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The su�x shown in eq. (3) is omitted in the above.

3 Tailor series expansion of divergent terms

Now let us consider the combination of the 1st and 2nd term of the Chinnery sum (1). When
the observation point is located near around +L, the sum of the 1st and 2nd term has the
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denominator rn (n = 2, 4, 6) and its numerators are given as follows:

f1(r) =
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(12)
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(13)
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Obviously, the numerators (12) to (18) become zero for r = 0. Then the functions F1 to F7

have the indeterminate form of convergence of the type 0/0, i.e. zero devided by zero. We
have a well-known method to obtain such kind of indeterminate limit (Moriguchi et al., 1956).
We may di�erentiate the denominator and the numerator with repect to r. We can �nd the
�nite limit of the divergent functions for r → 0. Similarly, we can �nd the �nite values of the
piezomagnetic �eld at another fault edge, i.e. x1 = −L, by combining the third and fourth
term of Chinnery sum.

As for the �eld values near around the fault edges x1 = ±L, we can de�ne the Tailor
series expansion of the divergent terms with respect to r. We simply give the formulas in the
following:
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where
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(26)
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and pn(x3) (n = 1, 2, 3) corresponds to three di�erent terms in eq. (3). We apply the above
formulas for r ≤ L/10.

4 Discussion

In Sasai's (1991) paper, the piezomagnetic �elds over the ground surface are shown for the
strike-slip and tensile faults. There appear no singularities around the fault edges. This is
because the �eld values at the fault edges were already known thanks to the indeterminate
procedure. However, a more close look at piezomagnetic �elds at fault edges was required when
we discuss the observations near the Landers, California, earthquake of Mw 7.3 (Johnston et
al., 1994). I summarized the results after 20 years in this manuscript. Utsugi et al.'s (2000)
formula for inclined rectangular faults is now widely used by many researchers, in which the
fault inclination is limited up to 89◦. Their results are compared with Sasai's (1991) �gures.
The rigorous solution for the fault inclination 90◦ is given here. This paper would be of some
help to young researchers who are interested in tectonomagnetism.
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