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Abstract

This paper presents some theoretical basis for piezomagnetic modeling in the vis-
coelastic material. The piezomagnetic field of the Mogi model in a viscoelastic half-space
is presented as an example by extending its analytic solution in an elastic medium. The
reason why the piezomagnetic parameter, i.e. the stress sensitivity 8, is independent
of the viscoelasticity is argued. Since the piezomagnetization is simply proportional to
the deviatoric stress, the correspondence principle is also applicable to the piezomagnetic
solution for the elastic problem. The Laplace transform of the viscoelastic parameter
is carefully derived based on Fung’s textbook, because there has been some confusion
among the literature. The Standard Linear Solid (SLS) including the Maxwell rheology
as its special case is assumed only for the shear stress, while the bulk modulus K is kept
constant. Two different types of the sources for the Mogi model are considered, i.e. the
center of pressure (COP) and the center of dilatation (COD), both of which give the same
deformation in the case of the elastic medium. The piezomagnetic potential is subject
to the correspondence principle, in which the Laplace transform of the piezomagnetic so-
lution is obtained in the same way as the displacement field in the viscoelastic medium.
The time-dependent behavior of the piezomagnetic field is obtained by inverse Laplace
transformation.

1 Introduction

Studies on the deformation of a viscoelastic earth were developed since 1970’s in order to
explain very slow crustal deformations with the duration time of several days to a few years,
e.g. PELTIER (1974). The viscoelastic behavior of the earth associated with an earthquake
was first investigated theoretically by RUNDLE (1978), in which the earth consists of an elastic
lithosphere underlain by a viscoelastic asthenosphere. Since the multi-layer earth model was
rather difficult to deal with analytically, a more simple case study was anticipated in order
to realize the behavior of a viscoelastic earth. BONAFEDE et al. (1986) presented the crustal
deformation due to the Mogi model in a viscoelastic half-space.

Currenti (personal communication, 2006) attempted to extend tectonomagnetic modeling to
viscoelastic materials. She followed BONAFEDE et al.’s (1986) scheme and applied it to SASAI’s
(1991a) solution for the piezomagnetic field due to the Mogi model in the elastic medium. She
successfully derived an analytical solution of the piezomagnetic field in a viscoelastic medium.
During the course of study, however, there were several issues to be clarified, which were
discussed between Currenti and Sasai. First of all, we had to verify our standpoint that the
piezomagnetic parameter, i.e. the stress sensitivity, is independent of viscoelastic parameters
and hence independent of time. The second is that BONAFEDE et al.’s (1986) elastic field for
the Mogi model had some defect as was revised by BONAFEDE (1990), which should be taken
into account in our modeling. The third is that there was some discrepancy among some papers
in the definition of the Laplace transform of viscoelastic parameters, which originated from the
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vague description of the correspondence principle. Moreover, most of them quoted FUNG’s
(1965) text book as the reference to the Laplace transform of the rigidity, but no explicit
formula for that is given there. We had to follow the derivation of the Laplace-transformed
rigidity and present the correspondence principle so as not to conflict with each other.

This article mainly describes how we resolved these issues before solving the problem. Then
we will briefly outline the derivation process of the solution. The final result will be published
elsewhere. (cf. CURRENTI et al., 2007)

2 The constitutive law for the linear viscoelastic solid

The mechanical properties of the viscoelastic solid were fully investigated by FUNG (1965).
Although the viscoelastic material generally shows complicated mechanical behavior owing to
its non-linearity and anisotropy, we here deal with the simplest case, i.e. the isotropic linear
viscoelasticity. In the following-sessions, u;, eij, 0ij, X; and p denote the displacement, strain,
stress, the Cartesian component of the body force per unit volume and density, respectively.
The summation convention applies in the following formulas.

A material whose stress is related to strain via such a convolution integral is called the
linear viscoelastic solid as:

Oe

t
oy = / Giju(z, t — T)—é%(:l:, T)dT, (1)

where G;ji is a fourth rank tensor, which is called the tensorial relaxation function. This
constitutive law is called the stress-strain relation of the relaxation type. Its inverse relation

t
0
e'i,j = / J'i,jlcl(m, t— ’r)%(fl}, 'T)dT (2)

is called the stress-strain relation of the creep type. The fourth rank tensor J;;x; is the tensorial
creep function.

If Giji does not change when we rotate the Cartesian coordinates system, such a material
is called isotropic. The isotropic fourth rank tensor can be expressed by

G, — Gy

Giju = 3

G
0ij0k + 71(51'1:5;'1 + 8itbjk) (3)

where G, and G, are scalar functions. Substituting eq. (3) into eq. (1), we obtain
¢ t 6 l t
Oy = / Gl((L', t—T)-Ey-(.’IJ, 'T)d’l‘, Ok = / G2(z‘ t—T)%(.’L‘, T)dT. (4)
—o0 or e -

Similarly, the isotropic creep function can be given by

Jo—J
260 + %(52'/:53'4' + 0u0j1) , (5)

Jiju = 3

and eq. (2) is reduced to

’ t a ! t a
eij = [00 J1(x, i —7)%(.’3, T)d'r, Ekk = [m JQ(IL', t—'r)%rﬁ(z, T)d’r. (6)
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a;;j and e;j are the deviatoric stress and the deviatoric strain, respectively, which are defined by

’ 1 ’
0y = Oy — §5ij0kk, €; = €ij —

1
§6,-_,-ekk . (7)

ij

There are three kinds of linear viscoelastic models which can be described by eq. (1) and/or
(2): (a) Maxwell solid, (b) Voigt solid, and (c) standard linear solid (SLS or Kelvin solid) as
shown in Fig. 1. In these models, a spring indicates the instantaneous elastic reaction, while a
dashpot the gradual stress relaxation proportional to its deformation velocity. Then the third
type of the constitutive law can be introduced as

PI(D)U;j = Ql(D)e;j’ PZ(D)U;gk = Q2(D)e;k, (8)

where D = 8/6t, and Py, @1, P, and @, are polynomials of the differential operater D. These
polynomials are defined depending on the type of viscoelastic models. Eq. (8) is particularly
useful to obtain the Laplace transform of material parameters. (In Fung’s (1965) textbook, a
full chapter (Chapter 13: Irreversible Thermodynamics and Viscoelasticity) is devoted to derive
the differential operater law (8). The derivation process is rather sophisticated. We present
here only the final result.)

n Y 2
" S E— A~
E—AMMW—F > F —F
F D o1
(a) (b) (c)

Fig. 1 Three kinds of linear viscoelastic models. (a) Maxwell solid. (b) Voigt solid. (c)
Standard linear solid (SLS).

3 Basic equations for the isotropic linear viscoelastic
solid

Let us present the governing equations for the displacement field of the isotropic linear vis-
coelastic solid. The strain is defined as

1
e = ot + ). (9)
The equation of continuity is given by
6p Ou;
= 10
%+ om ( ) =0 (10)
The equation of motion is given by
. 627.1,,'
Tij.j + Xi = 9—872—, Oi; = Oji- (11)
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The stress-strain relationship can be given by either of the relaxation law (4), or the creep law
(5) or the differential operator law (8). Since we assume a homogeneous medium, the material
functions in (4) and (5) as well as the differential operator with time in (8) are independent of
the position. The initial condition is

u =¢€; =05 =0 (for —oo <t <0). (12)
The boundary conditions are: (1) to give the traction on the surface S, with unit normal v;
T, =o4v; = f; (onS,), (13)
or (2) to give the displacement on the surface S,
u =g (onS,), (14)

where f; and g; are given functions of position and time, while S, + S, = S is the whole
surface of the material.

The problem of the linear viscoelasticity is thus formulated, in which we solve these equations
under the given X;, f;, G; and the initial condition (12). Only except for the constitutive law
(4), or (5) or (8), the equations are quite the same as those for the elasticity problem.

4 The correspondence principle
The constitutive relation for the isotropic linear elasticity is Hooke’s law:

0ij = ey + 2ueq;, (15)
where A and p are Lame’s constants. This formula can be rewritten as

!

’
Uij = Glezj,

ok = Gaekr, (16)

where G and G are the elastic constants corresponding to the viscoelastic parameters G, (z, t)
and Gs(z, t) in eq. (3). They are given by

G1 = 2[1., Gz =3\ + 2# (17)

Taking the Laplace transform of eq. (4), we have

&.;j(s) = sél(s)é;j(s)', ark(s) = ség(s)ékk(s), (18)
where the tilde indicates the Laplace transform and s the Laplace transform variable. Putting
~ 1 - < 1 = -
is) = 58G1(s),  s) = 35{Gals) — Gils)}, (19)
we obtain _ |
G,;(s) = 20(s)é;;(s), Gur(s) = {3A(s) + 2/i(s)}exx(s). (20)

Both the relations are equivalent to

Gis(s) = Ms)ekx(5)d;; + 20i(s)8i5(s) . (21)
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Taking Laplace transforms of all the basic equations for the viscoelasticity (9) to (14), we
obtain quite the same formulas as those of linear elasticity. Thus we have equations for vis-
coelastic materials in the Laplace domain, which are formally quite identical to those for the
elastic medium. Then the following correspondence principle was proposed (LEE, 1955): Re-
place the elastic constants X and p in the elastic solution u.(z, t) by their transformed quantities
A(s), ii(s) obtaining G.(z, s), then invert. The function u(z, t) is the solution to the viscoelastic
problem.

Let us consider a standard linear solid model as shown in Fig. 1 (c). ¢ and e represent
the load and the strain, respectively. For a spring the load is proportional to the strain, i.e.
o' = 2ue’, while for a dashpot it is proportional to the strain rate, i.e. ¢ = 2pDe’ (D = §/0t)
and 7 is the viscosity. The factor 2 is multiplied in the case of the deviatoric stress-strain
relationship corresponding to eq. (17). (In the following derivation process, the factor 2 in
the relationship 2ue = o is crucial. Otherwise, a factor 1/2 remains in the final expression
for fi(s) (see eq. (26)), which is not consistent with the initial value of the Laplace-inverted
solution.) Since _

ey = 0, 2use, + 2nDey =0, e = e + e,

we have
1 1

—_— + e —
(2p1 2ug + 2nD
Applying this relation to the differential operater law eq. (8), we obtain

!

)a'=e.

P(D) = nD + (1 +p2), @Qi(D) = 2um(nD + p2). (22)
As the initial condition (12), we assume a simple case of the Heaviside step function:
1 (t>0)
t) = . 23
o) h(t<m (23)

Then the Laplace transform of eq. (8) can be obtained simply by replacing D with s as

Py(s)535(s) = Qu(s)éy(s), (24)

which corresponds to the first equation of eq. (18). We obtain the Laplace transform of G, for
SLoes Quls) _ 2 (s +pm/n)
Gus) = X _ 2 KIS T H/T) 25
{) = SRG) T S5t Ga + )/ (25)
Finally, the Laplace transform of y is given by

oy _ L4 (st pe/n) '
a(s) = ESGI = St (26)

In some papers, eq. (26) is frequently referred as due to FUNG (1965). However, this formula
is not explicitly given in his textbook.
In the case of the Maxwell solid, we obtain by putting y, = 0 in eq. (26):

ils) = 22— 27)

PELTIER (1974) derived ji(s) for a Maxwell solid in a different way from FUNG (1965), which
was quite identical to eq. (27).
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The second formula in eq. (16) gives the definition of the bulk modulus K:

1 2
K = -G, = =i 28
3G2 A+ 3_/»L (28)
In the actual Earth, ordinary rocks behave elastically under the hydrostatic pressure. Hence
we follow BONAFEDE et al. (1986), in which they remain the bulk modulus K as a constant in

the viscoelastic material. The Laplace transform of A can be obtained as

3 2. 2 (s + p2/n)
AMs) =K — zj(s) =K — = . 29
(=) 37 35+ Ga + p)/ ®9)
However, some authors adopted different rheological models: For example, Peltier (1974) as-

sumed SLS for A and Maxwell solid for u, while RUNDLE (1978) a constant value for A and
Maxwell solid for .

5 Piezomagnetic effect in the viscoelastic medium

No piezomagnetic experiments have ever been made on the viscoelastic behavior of magnetized
rocks. Piezomagnetic properties are carried by titano-magnetite, which occupies only a small
portion of ordinary rocks. We suppose that titanomagnetite itself is elastic, while the non-
magnetic surrounding matrix behaves viscoelastically. And piezomagnetization is determined
simply by the stress field around titanomagnetites. Then the stress sensitivity /3 is independent
of elastic constants and the rheological behavior of the host rock.

The linear piezomagnetic law or the stress-magnetization relationship is given by (SAsAI,
1980),

AJ = S0i,J;, (30)

where J and AJ are the magnetization of the material and its increment (i.e. piezomagnetiza-
tion), while 5 is the stress sensitivity. The magnetic potential produced by the piezomagneti-
zation (30) is given by

Wi(r) = f / AJ; - dV(r) (31)

where p = |r — r'|, and W, indicates the plezomagnetlc potential produced by the i-th com-
ponent of the magnetization.

According to our assumption, # and J are independent of the rheological behavior of host
rocks. When the magnetic parameters 5 and J are homogeneous within the volume V| they are
excluded from the 1ntegral sign. Then only a determines the magnetic potential, in which the
deviatoric stress a i; 18 given as has been descrlbed in the previous section. This implies that: If
we already have an analytic solution for the piezomagnetic potential of any linear elastic model,
we can also apply the correspondence principle to the solution to obtain the viscoelastic behavior
of the piezomagnetic field.

Since we assume the Heaviside step function (23) as the source time function, we may put

Blr, s) = §EWlr, ) = TWilr, s), (32)

where w;(r, s) is the Laplace-transformed piezomagnetic potential, while Wi(r, s) indicates the
function W;(r) in which A and yu are replaced with A(s) and ji(s).
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6 Displacement field of the Mogi model

BONAFEDE et al. (1986) reexamined MARUYAMA's (1964) formulas for the elastic dislocations
to obtain those expressed with Lame’s constants A and g explicitly and finally derived the
viscoelastic solution for the Mogi model. However, BONAFEDE (1990) pointed out that the
displacement field of the Mogi model as derived from MARUYAMA's (1964) Galerkin vector by
himself (BONAFEDE et al., 1986) should be revised to the one based on Love’s strain function
(MINDLIN and CHENG, 1950), both of which are different by a factor of elastic constants. The
solution based on the Galerkin vector gives the deformation of an elastic half-space due to
inflation of a spherical shell which involves an elastic sphere inside (BONAFEDE, 1990). This
is reasonable because MARUYAMA’s (1964) Galerkin vector defines the strain nuclei along the
dislocation surface: If the dislocation surface makes a closed one, an elastic medium should
exist within the closed surface. A portion of the incremental internal pressure is used so as
to compress the sphere, which reduces the surface deformation by a factor of 1/1.8 (in case of
A = ), as compared with the solution based on Love’s strain function (BONAFEDE, 1990).

SASAT’s (1979, 1991a) piezomagnetic solution was derived from Love’s strain function, which
is quite coincident with BONAFEDE’s (1990) revision. Hence we begin with the following dis-
placement field of the Mogi model (SAsAI, 1991a):

_Cf=z A+3pz 6z2(2+D)
wolmt e w ) &

_Cly )\+3,ui_6yz(z+D)
=g {Ri‘ A+p R R ’ (34)

C (z—D A—pz—(A+3u)D 6z(z+D)2}
z = + - y 35
=l T Ot W F 73 (35)
where

Ry = /22 4+y2+(2—D)?, Ry = /22+y2+(z+ D)2, (36)

Let us seek to obtain the relationship between the moment of the nucleus C' and the incre-
ment of the pressure AP or the source volume AV. According to SAsAl (1979), the normal
stress orp across the source wall is given by

2C
which should be balanced with the internal hydrostatic pressure AP. We follow the standard
sign convention for stress, i.e. compression is negative, and we have

ORR =

- —%asAP. ~ (38)

Using either of eq. (33) to eq. (35), we can calculate the increment of the source radius Aa
when an internal hydrostatic pressure AP is applied, which is given by the displacement at an
arbitrary point on the source sphere, for example,

C1
a2

Aa = |u,(0,0,D —a)| = 2aa (% << 1). (39)
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The incremental source volume is estimated as
2
AV = 4rd®Aa = 7”0. (40)

Thus the moment C can be expressed in terms of AV or AP as

3

m a
= —AV = ——AP. 41
¢ 2m v 2 (41)
Two kind of sources are assumed, i.e.
(1) The center of dilatation (COD):
c=Lav, (42)

2

where the incremental source volume AV is kept constant, while

(2) The center of pressure (COP):
3

C = —%AP, (43)

where the incremental pressure AP remains constant.

7 Piezomagnetic potential in the elastic medium

The piezomagnetic field due to the Mogi model was obtained by SAsAT (1991a), which was a
corrected version of the point source solution by SASAI (1979). The piezomagnetic potential
due to a point source of the Mogi model was obtained on the basis of the displacement field
eq. (33) to (35) (SAsaAl, 1991a) as:

C 3A+2u\p p3 3IA+2p o3
At zg _ 3z
L3 (2-%)] @>p (44
0 ] (H < D)
2u U D, D3 6(A+p) 1 3D2
2w, = - “s1_=3 e SO o = [ Wt
o =46 [ 3/\+2ﬂ(p‘1‘ P§)+3>\+2ﬂ A
My (D | 3D
+d Tap 7% + —,,gz)] (H>D) (45)
0 ] (H < D)
where
pi = (z5 +y5 + D)2, (46)
and .
D1=D—2’0,D2=2H—D—ZQ,D3=2H+D—ZQ. (47)
Since C}, is given by \
1 3A+2u
Cr = 58kn Syt (48)
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eq.(44) and (45) are rewritten as follows:

p (z0 Tp zoD3
W, = n8J,C | —+—— (2 -=3) +18H
o /\+n(po p§) A
9 _ 3z
G-%) @>p (49)
0 | (H<D)

At p 3 P3
+{—(%3+3—,f=;1) (#>D) (50)
0 (H < D)

Depending on the type of the source, we may choose (42) for COD or (43) for COP as the
moment C.

8 Application of the correspondence principle

We are to find the time-dependent piezomagnetic potential for the viscoelastic medium. We
follow BONAFEDE et al. (1986), in which they adopted a standard linear solid (SLS) rheology
for the shear modulus g, while the bulk modulus K was left as a constant. We assume that an
abrupt increase in the source volume AV or the internal pressure AP takes place in the source
sphere, which is represented by a Heaviside function ¢(¢) in eq. (23). In the piezomagnetic
potential eq. (49) and (50), only the elastic constants A and u as well as C in the case of COD,
i.e. eq. (42), show the viscoelastic behavior. We can apply the correspondence principle to
these equations and obtain the time-dependent behavior of the piezomagnetic field.

In the case of COP, C contains no elastic constants. Also we find in eq. (49) and (50) that
there exist terms without elastic constants. This implies that a portion of the piezomagnetic
field is time-independent and that it will never vanish forever. Physical interpretation for this is
that an incremental pressure AP continuously applies to the source surface to always generate
shear stress within the viscoelastic medium. Hence the source sphere continues to expand and
will finally break. The COP model is somewhat physically unrealistic.

On the otherhand, in the case of COD, all the terms are multiplied by p, and the piezo-
magnetic field will more or less diminish owing to the shear stress relaxation. In particular for
Maxwell rheology, the shear stress and hence the piezomagnetic field will completely disappear.
The wall of the source sphere stops after the initial expansion, which is likely to occur in the
actual Earth.

We apply the correspondence principle to eq. (49) and (50) to obtain their Laplace trans-
form. Looking for elastic constants in eq. (49) and (50) together with (42) and (43), we find
only three coefficients which contain X and g, i.e. u?/(A+ ) and g for COD and p/(A+ p) for
COP. Taking into account that K = A+ %p,, we denote these coefficients as follows:

© 3u
= = 51
M ENfp 3K+p (51)
3 2
oy = pog = 3K“+”- (52)
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With the aid of eq. (26), all the necessary Laplace transforms are given as follows:

3(s) = | (53)
1. pinl o op 1 '
1o Ml oom 54
s”(s) H [(1 nA)s + nAs+A] (54)
1. 3 3K, 1 3K i, 1 ]
e = - - -t 55
sa](s) 3K + [{ (3K+u1)nB}s + (3K +m)nBs+ B (59)
San(s) = g -t )
$ 3K + pr+pe 3K (py 4 po) + pape’ s
3K+m 1 9K? 1 ] (56)
pr+pe s+ A 3K(p+ p2) + pape s+ B
where
A= “1;“2 (57)
3K (1 + p2) + papo
B = 58
GK + ) &%)

Note that BONAFEDE et al.’s (1986) time unit 7 is defined by B~!, which is the typical relaxation
time of the COP model.

The inverse Laplace transforms of these functions can be easily obtained since we have

£ (sip) — e (59)
(1) =0 (60)

We find that the time variation of the piezomagnetic field shows: (1) the exponential decay
with time constants A~! and B~! plus the time-invariant component for COD source, (2) the
exponential decay with a time constant B~! plus the time-invariant component for COP, and
(3) the initial value at ¢ = 0 completely identical to the elastic solution. In particular, for a
Maxwell solid, both the coefficients of 1/s in eq. (54) and (56) become zero by putting uy = 0.
Then we find that: (4) for a Maxwell solid, the solution for COD source in the time domain
lacks the term containing g(t), which implies that the magnetic field diminishes to zero when
t — oo, while (5) even for a Maxwell solid, the solution for COP source remains finite when
t — 00 because it contains some terms multiplied by g(¢).

9 Discussion

The present method can be easily applied to some tectonomagnetic models in an elastic half-
space, i.e. the Mogi model with a finite spherical source (SASAI, 1991a), vertical rectangular
strike-slip and tensile faults (SASAI, 1991b), inclined shear and tensile faults (UTSUGI et al.,
2000) and a uniform circular load or the dam-magnetic effect (SAsAl, 1986). However, a
viscoelastic half-space is a too crude approximation to the actual earth. More realistic would
be a layered earth with the mixture of elastic and viscoelastic ones. OKUBO and OSHIMAN
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(2004) presented the piezomagnetic field due to the Mogi model in a layered elastic earth.
They derived the solution by a numerical volume integral, to which the present method is not
applicable. For a point source or strain nuclei of elastic dislocation problems, we presume, we
can obtain analytic formulas in a layered earth with the propagator matrix technique which
was employed by OKUBO and OSHIMAN (2004). Then the present method will be available
to investigate the piezomagnetic field in a viscoelastic earth. This may be a rather laborious
work, but should make a breakthrough to further tectonomagnetic studies.

Another interesting problem is to compare the time variation of the piezomagnetic field with
that of the gravity in the viscoelastic medium. This is because the gravity due to density changes
is caused solely by the hydrostatic pressure, which is complementary to the piezomagnetic
change produced by the deviatoric stress alone. Combined observations of the gravity and the
magnetic field by recent high-accuracy absolute measurement systems can be a useful tool to
investigate the viscoelastic behavior of the earth.
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